/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * OrdinalClassClassifier.java * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.meta; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.SingleClassifierEnhancer; import weka.classifiers.rules.ZeroR; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.filters.Filter; import weka.filters.unsupervised.attribute.MakeIndicator; import java.util.Enumeration; import java.util.Vector; /** * Meta classifier that allows standard classification algorithms to be applied to ordinal class problems.
*
* For more information see:
*
* Eibe Frank, Mark Hall: A Simple Approach to Ordinal Classification. In: 12th European Conference on Machine Learning, 145-156, 2001.
*
* Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, Janos A. Csirik: Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. In: Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002), 546-553, 2002. *

* * BibTeX: *

 * @inproceedings{Frank2001,
 *    author = {Eibe Frank and Mark Hall},
 *    booktitle = {12th European Conference on Machine Learning},
 *    pages = {145-156},
 *    publisher = {Springer},
 *    title = {A Simple Approach to Ordinal Classification},
 *    year = {2001}
 * }
 * 
 * @inproceedings{Schapire2002,
 *    author = {Robert E. Schapire and Peter Stone and David A. McAllester and Michael L. Littman and Janos A. Csirik},
 *    booktitle = {Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002)},
 *    pages = {546-553},
 *    publisher = {Morgan Kaufmann},
 *    title = {Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation},
 *    year = {2002}
 * }
 * 
*

* * Valid options are:

* *

 -S
 *  Turn off Schapire et al.'s smoothing heuristic (ICML02, pp. 550).
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.J48)
* *
 
 * Options specific to classifier weka.classifiers.trees.J48:
 * 
* *
 -U
 *  Use unpruned tree.
* *
 -C <pruning confidence>
 *  Set confidence threshold for pruning.
 *  (default 0.25)
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf.
 *  (default 2)
* *
 -R
 *  Use reduced error pruning.
* *
 -N <number of folds>
 *  Set number of folds for reduced error
 *  pruning. One fold is used as pruning set.
 *  (default 3)
* *
 -B
 *  Use binary splits only.
* *
 -S
 *  Don't perform subtree raising.
* *
 -L
 *  Do not clean up after the tree has been built.
* *
 -A
 *  Laplace smoothing for predicted probabilities.
* *
 -Q <seed>
 *  Seed for random data shuffling (default 1).
* * * @author Mark Hall * @author Eibe Frank * @version $Revision: 5928 $ * @see OptionHandler */ public class OrdinalClassClassifier extends SingleClassifierEnhancer implements OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -3461971774059603636L; /** The classifiers. (One for each class.) */ private Classifier [] m_Classifiers; /** The filters used to transform the class. */ private MakeIndicator[] m_ClassFilters; /** ZeroR classifier for when all base classifier return zero probability. */ private ZeroR m_ZeroR; /** Whether to use smoothing to prevent negative "probabilities". */ private boolean m_UseSmoothing = true; /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.J48"; } /** * Default constructor. */ public OrdinalClassClassifier() { m_Classifier = new weka.classifiers.trees.J48(); } /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Meta classifier that allows standard classification algorithms " +"to be applied to ordinal class problems.\n\n" + "For more information see: \n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Eibe Frank and Mark Hall"); result.setValue(Field.TITLE, "A Simple Approach to Ordinal Classification"); result.setValue(Field.BOOKTITLE, "12th European Conference on Machine Learning"); result.setValue(Field.YEAR, "2001"); result.setValue(Field.PAGES, "145-156"); result.setValue(Field.PUBLISHER, "Springer"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Robert E. Schapire and Peter Stone and David A. McAllester " + "and Michael L. Littman and Janos A. Csirik"); additional.setValue(Field.TITLE, "Modeling Auction Price Uncertainty Using Boosting-based " + "Conditional Density Estimation"); additional.setValue(Field.BOOKTITLE, "Machine Learning, Proceedings of the Nineteenth " + "International Conference (ICML 2002)"); additional.setValue(Field.YEAR, "2002"); additional.setValue(Field.PAGES, "546-553"); additional.setValue(Field.PUBLISHER, "Morgan Kaufmann"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); result.enable(Capability.NOMINAL_CLASS); return result; } /** * Builds the classifiers. * * @param insts the training data. * @throws Exception if a classifier can't be built */ public void buildClassifier(Instances insts) throws Exception { Instances newInsts; // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); if (m_Classifier == null) { throw new Exception("No base classifier has been set!"); } m_ZeroR = new ZeroR(); m_ZeroR.buildClassifier(insts); int numClassifiers = insts.numClasses() - 1; numClassifiers = (numClassifiers == 0) ? 1 : numClassifiers; if (numClassifiers == 1) { m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, 1); m_Classifiers[0].buildClassifier(insts); } else { m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, numClassifiers); m_ClassFilters = new MakeIndicator[numClassifiers]; for (int i = 0; i < m_Classifiers.length; i++) { m_ClassFilters[i] = new MakeIndicator(); m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); m_ClassFilters[i].setValueIndices(""+(i+2)+"-last"); m_ClassFilters[i].setNumeric(false); m_ClassFilters[i].setInputFormat(insts); newInsts = Filter.useFilter(insts, m_ClassFilters[i]); m_Classifiers[i].buildClassifier(newInsts); } } } /** * Returns the distribution for an instance. * * @param inst the instance to compute the distribution for * @return the class distribution for the given instance * @throws Exception if the distribution can't be computed successfully */ public double [] distributionForInstance(Instance inst) throws Exception { if (m_Classifiers.length == 1) { return m_Classifiers[0].distributionForInstance(inst); } double [] probs = new double[inst.numClasses()]; double [][] distributions = new double[m_ClassFilters.length][0]; for(int i = 0; i < m_ClassFilters.length; i++) { m_ClassFilters[i].input(inst); m_ClassFilters[i].batchFinished(); distributions[i] = m_Classifiers[i]. distributionForInstance(m_ClassFilters[i].output()); } // Use Schapire et al.'s smoothing heuristic? if (getUseSmoothing()) { double[] fScores = new double[distributions.length + 2]; fScores[0] = 1; fScores[distributions.length + 1] = 0; for (int i = 0; i < distributions.length; i++) { fScores[i + 1] = distributions[i][1]; } // Sort scores in ascending order int[] sortOrder = Utils.sort(fScores); // Compute pointwise maximum of lower bound int minSoFar = sortOrder[0]; int index = 0; double[] pointwiseMaxLowerBound = new double[fScores.length]; for (int i = 0; i < sortOrder.length; i++) { // Progress to next higher value if possible while (minSoFar > sortOrder.length - i - 1) { minSoFar = sortOrder[++index]; } pointwiseMaxLowerBound[sortOrder.length - i - 1] = fScores[minSoFar]; } // Get scores in descending order int[] newSortOrder = new int[sortOrder.length]; for (int i = sortOrder.length - 1; i >= 0; i--) { newSortOrder[sortOrder.length - i - 1] = sortOrder[i]; } sortOrder = newSortOrder; // Compute pointwise minimum of upper bound int maxSoFar = sortOrder[0]; index = 0; double[] pointwiseMinUpperBound = new double[fScores.length]; for (int i = 0; i < sortOrder.length; i++) { // Progress to next lower value if possible while (maxSoFar < i) { maxSoFar = sortOrder[++index]; } pointwiseMinUpperBound[i] = fScores[maxSoFar]; } // Compute average for (int i = 0; i < distributions.length; i++) { distributions[i][1] = (pointwiseMinUpperBound[i + 1] + pointwiseMaxLowerBound[i + 1]) / 2.0; } } for (int i = 0; i < inst.numClasses(); i++) { if (i == 0) { probs[i] = 1.0 - distributions[0][1]; } else if (i == inst.numClasses() - 1) { probs[i] = distributions[i - 1][1]; } else { probs[i] = distributions[i - 1][1] - distributions[i][1]; if (!(probs[i] >= 0)) { System.err.println("Warning: estimated probability " + probs[i] + ". Rounding to 0."); probs[i] = 0; } } } if (Utils.gr(Utils.sum(probs), 0)) { Utils.normalize(probs); return probs; } else { return m_ZeroR.distributionForInstance(inst); } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector vec = new Vector(); vec.addElement(new Option( "\tTurn off Schapire et al.'s smoothing " + "heuristic (ICML02, pp. 550).", "S", 0, "-S")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { vec.addElement(enu.nextElement()); } return vec.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -S
   *  Turn off Schapire et al.'s smoothing heuristic (ICML02, pp. 550).
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -W
   *  Full name of base classifier.
   *  (default: weka.classifiers.trees.J48)
* *
 
   * Options specific to classifier weka.classifiers.trees.J48:
   * 
* *
 -U
   *  Use unpruned tree.
* *
 -C <pruning confidence>
   *  Set confidence threshold for pruning.
   *  (default 0.25)
* *
 -M <minimum number of instances>
   *  Set minimum number of instances per leaf.
   *  (default 2)
* *
 -R
   *  Use reduced error pruning.
* *
 -N <number of folds>
   *  Set number of folds for reduced error
   *  pruning. One fold is used as pruning set.
   *  (default 3)
* *
 -B
   *  Use binary splits only.
* *
 -S
   *  Don't perform subtree raising.
* *
 -L
   *  Do not clean up after the tree has been built.
* *
 -A
   *  Laplace smoothing for predicted probabilities.
* *
 -Q <seed>
   *  Seed for random data shuffling (default 1).
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setUseSmoothing(!Utils.getFlag('S', options)); super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 1]; int current = 0; if (!getUseSmoothing()) { options[current++] = "-S"; } System.arraycopy(superOptions, 0, options, current, superOptions.length); current += superOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Tip text method. * * @return a tip text string suitable for displaying as a popup in the GUI. */ public String useSmoothingTipText() { return "If true, use Schapire et al.'s heuristic (ICML02, pp. 550)."; } /** * Determines whether Schapire et al.'s smoothing method is used. * * @param b true if the smoothing heuristic is to be used. */ public void setUseSmoothing(boolean b) { m_UseSmoothing = b; } /** * Checks whether Schapire et al.'s smoothing method is used. * * @return true if the smoothing heuristic is to be used. */ public boolean getUseSmoothing() { return m_UseSmoothing; } /** * Prints the classifiers. * * @return a string representation of this classifier */ public String toString() { if (m_Classifiers == null) { return "OrdinalClassClassifier: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("OrdinalClassClassifier\n\n"); for (int i = 0; i < m_Classifiers.length; i++) { text.append("Classifier ").append(i + 1); if (m_Classifiers[i] != null) { if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) { text.append(", using indicator values: "); text.append(m_ClassFilters[i].getValueRange()); } text.append('\n'); text.append(m_Classifiers[i].toString() + "\n"); } else { text.append(" Skipped (no training examples)\n"); } } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new OrdinalClassClassifier(), argv); } }