[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * OrdinalClassClassifier.java |
---|
| 19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.SingleClassifierEnhancer; |
---|
| 28 | import weka.classifiers.rules.ZeroR; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.Option; |
---|
| 33 | import weka.core.OptionHandler; |
---|
| 34 | import weka.core.RevisionUtils; |
---|
| 35 | import weka.core.TechnicalInformation; |
---|
| 36 | import weka.core.TechnicalInformationHandler; |
---|
| 37 | import weka.core.Utils; |
---|
| 38 | import weka.core.Capabilities.Capability; |
---|
| 39 | import weka.core.TechnicalInformation.Field; |
---|
| 40 | import weka.core.TechnicalInformation.Type; |
---|
| 41 | import weka.filters.Filter; |
---|
| 42 | import weka.filters.unsupervised.attribute.MakeIndicator; |
---|
| 43 | |
---|
| 44 | import java.util.Enumeration; |
---|
| 45 | import java.util.Vector; |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | <!-- globalinfo-start --> |
---|
| 49 | * Meta classifier that allows standard classification algorithms to be applied to ordinal class problems.<br/> |
---|
| 50 | * <br/> |
---|
| 51 | * For more information see: <br/> |
---|
| 52 | * <br/> |
---|
| 53 | * Eibe Frank, Mark Hall: A Simple Approach to Ordinal Classification. In: 12th European Conference on Machine Learning, 145-156, 2001.<br/> |
---|
| 54 | * <br/> |
---|
| 55 | * Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, Janos A. Csirik: Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. In: Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002), 546-553, 2002. |
---|
| 56 | * <p/> |
---|
| 57 | <!-- globalinfo-end --> |
---|
| 58 | * |
---|
| 59 | <!-- technical-bibtex-start --> |
---|
| 60 | * BibTeX: |
---|
| 61 | * <pre> |
---|
| 62 | * @inproceedings{Frank2001, |
---|
| 63 | * author = {Eibe Frank and Mark Hall}, |
---|
| 64 | * booktitle = {12th European Conference on Machine Learning}, |
---|
| 65 | * pages = {145-156}, |
---|
| 66 | * publisher = {Springer}, |
---|
| 67 | * title = {A Simple Approach to Ordinal Classification}, |
---|
| 68 | * year = {2001} |
---|
| 69 | * } |
---|
| 70 | * |
---|
| 71 | * @inproceedings{Schapire2002, |
---|
| 72 | * author = {Robert E. Schapire and Peter Stone and David A. McAllester and Michael L. Littman and Janos A. Csirik}, |
---|
| 73 | * booktitle = {Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002)}, |
---|
| 74 | * pages = {546-553}, |
---|
| 75 | * publisher = {Morgan Kaufmann}, |
---|
| 76 | * title = {Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation}, |
---|
| 77 | * year = {2002} |
---|
| 78 | * } |
---|
| 79 | * </pre> |
---|
| 80 | * <p/> |
---|
| 81 | <!-- technical-bibtex-end --> |
---|
| 82 | * |
---|
| 83 | <!-- options-start --> |
---|
| 84 | * Valid options are: <p/> |
---|
| 85 | * |
---|
| 86 | * <pre> -S |
---|
| 87 | * Turn off Schapire et al.'s smoothing heuristic (ICML02, pp. 550).</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -D |
---|
| 90 | * If set, classifier is run in debug mode and |
---|
| 91 | * may output additional info to the console</pre> |
---|
| 92 | * |
---|
| 93 | * <pre> -W |
---|
| 94 | * Full name of base classifier. |
---|
| 95 | * (default: weka.classifiers.trees.J48)</pre> |
---|
| 96 | * |
---|
| 97 | * <pre> |
---|
| 98 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
| 99 | * </pre> |
---|
| 100 | * |
---|
| 101 | * <pre> -U |
---|
| 102 | * Use unpruned tree.</pre> |
---|
| 103 | * |
---|
| 104 | * <pre> -C <pruning confidence> |
---|
| 105 | * Set confidence threshold for pruning. |
---|
| 106 | * (default 0.25)</pre> |
---|
| 107 | * |
---|
| 108 | * <pre> -M <minimum number of instances> |
---|
| 109 | * Set minimum number of instances per leaf. |
---|
| 110 | * (default 2)</pre> |
---|
| 111 | * |
---|
| 112 | * <pre> -R |
---|
| 113 | * Use reduced error pruning.</pre> |
---|
| 114 | * |
---|
| 115 | * <pre> -N <number of folds> |
---|
| 116 | * Set number of folds for reduced error |
---|
| 117 | * pruning. One fold is used as pruning set. |
---|
| 118 | * (default 3)</pre> |
---|
| 119 | * |
---|
| 120 | * <pre> -B |
---|
| 121 | * Use binary splits only.</pre> |
---|
| 122 | * |
---|
| 123 | * <pre> -S |
---|
| 124 | * Don't perform subtree raising.</pre> |
---|
| 125 | * |
---|
| 126 | * <pre> -L |
---|
| 127 | * Do not clean up after the tree has been built.</pre> |
---|
| 128 | * |
---|
| 129 | * <pre> -A |
---|
| 130 | * Laplace smoothing for predicted probabilities.</pre> |
---|
| 131 | * |
---|
| 132 | * <pre> -Q <seed> |
---|
| 133 | * Seed for random data shuffling (default 1).</pre> |
---|
| 134 | * |
---|
| 135 | <!-- options-end --> |
---|
| 136 | * |
---|
| 137 | * @author Mark Hall |
---|
| 138 | * @author Eibe Frank |
---|
| 139 | * @version $Revision: 5928 $ |
---|
| 140 | * @see OptionHandler |
---|
| 141 | */ |
---|
| 142 | public class OrdinalClassClassifier |
---|
| 143 | extends SingleClassifierEnhancer |
---|
| 144 | implements OptionHandler, TechnicalInformationHandler { |
---|
| 145 | |
---|
| 146 | /** for serialization */ |
---|
| 147 | static final long serialVersionUID = -3461971774059603636L; |
---|
| 148 | |
---|
| 149 | /** The classifiers. (One for each class.) */ |
---|
| 150 | private Classifier [] m_Classifiers; |
---|
| 151 | |
---|
| 152 | /** The filters used to transform the class. */ |
---|
| 153 | private MakeIndicator[] m_ClassFilters; |
---|
| 154 | |
---|
| 155 | /** ZeroR classifier for when all base classifier return zero probability. */ |
---|
| 156 | private ZeroR m_ZeroR; |
---|
| 157 | |
---|
| 158 | /** Whether to use smoothing to prevent negative "probabilities". */ |
---|
| 159 | private boolean m_UseSmoothing = true; |
---|
| 160 | |
---|
| 161 | /** |
---|
| 162 | * String describing default classifier. |
---|
| 163 | * |
---|
| 164 | * @return the default classifier classname |
---|
| 165 | */ |
---|
| 166 | protected String defaultClassifierString() { |
---|
| 167 | |
---|
| 168 | return "weka.classifiers.trees.J48"; |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | /** |
---|
| 172 | * Default constructor. |
---|
| 173 | */ |
---|
| 174 | public OrdinalClassClassifier() { |
---|
| 175 | m_Classifier = new weka.classifiers.trees.J48(); |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | /** |
---|
| 179 | * Returns a string describing this attribute evaluator |
---|
| 180 | * @return a description of the evaluator suitable for |
---|
| 181 | * displaying in the explorer/experimenter gui |
---|
| 182 | */ |
---|
| 183 | public String globalInfo() { |
---|
| 184 | return "Meta classifier that allows standard classification algorithms " |
---|
| 185 | +"to be applied to ordinal class problems.\n\n" |
---|
| 186 | + "For more information see: \n\n" |
---|
| 187 | + getTechnicalInformation().toString(); |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | /** |
---|
| 191 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 192 | * detailed information about the technical background of this class, |
---|
| 193 | * e.g., paper reference or book this class is based on. |
---|
| 194 | * |
---|
| 195 | * @return the technical information about this class |
---|
| 196 | */ |
---|
| 197 | public TechnicalInformation getTechnicalInformation() { |
---|
| 198 | TechnicalInformation result; |
---|
| 199 | TechnicalInformation additional; |
---|
| 200 | |
---|
| 201 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 202 | result.setValue(Field.AUTHOR, "Eibe Frank and Mark Hall"); |
---|
| 203 | result.setValue(Field.TITLE, "A Simple Approach to Ordinal Classification"); |
---|
| 204 | result.setValue(Field.BOOKTITLE, "12th European Conference on Machine Learning"); |
---|
| 205 | result.setValue(Field.YEAR, "2001"); |
---|
| 206 | result.setValue(Field.PAGES, "145-156"); |
---|
| 207 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
| 208 | |
---|
| 209 | additional = result.add(Type.INPROCEEDINGS); |
---|
| 210 | additional.setValue(Field.AUTHOR, "Robert E. Schapire and Peter Stone and David A. McAllester " + |
---|
| 211 | "and Michael L. Littman and Janos A. Csirik"); |
---|
| 212 | additional.setValue(Field.TITLE, "Modeling Auction Price Uncertainty Using Boosting-based " + |
---|
| 213 | "Conditional Density Estimation"); |
---|
| 214 | additional.setValue(Field.BOOKTITLE, "Machine Learning, Proceedings of the Nineteenth " + |
---|
| 215 | "International Conference (ICML 2002)"); |
---|
| 216 | additional.setValue(Field.YEAR, "2002"); |
---|
| 217 | additional.setValue(Field.PAGES, "546-553"); |
---|
| 218 | additional.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
| 219 | |
---|
| 220 | return result; |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | /** |
---|
| 224 | * Returns default capabilities of the classifier. |
---|
| 225 | * |
---|
| 226 | * @return the capabilities of this classifier |
---|
| 227 | */ |
---|
| 228 | public Capabilities getCapabilities() { |
---|
| 229 | Capabilities result = super.getCapabilities(); |
---|
| 230 | |
---|
| 231 | // class |
---|
| 232 | result.disableAllClasses(); |
---|
| 233 | result.disableAllClassDependencies(); |
---|
| 234 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 235 | |
---|
| 236 | return result; |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | /** |
---|
| 240 | * Builds the classifiers. |
---|
| 241 | * |
---|
| 242 | * @param insts the training data. |
---|
| 243 | * @throws Exception if a classifier can't be built |
---|
| 244 | */ |
---|
| 245 | public void buildClassifier(Instances insts) throws Exception { |
---|
| 246 | |
---|
| 247 | Instances newInsts; |
---|
| 248 | |
---|
| 249 | // can classifier handle the data? |
---|
| 250 | getCapabilities().testWithFail(insts); |
---|
| 251 | |
---|
| 252 | // remove instances with missing class |
---|
| 253 | insts = new Instances(insts); |
---|
| 254 | insts.deleteWithMissingClass(); |
---|
| 255 | |
---|
| 256 | if (m_Classifier == null) { |
---|
| 257 | throw new Exception("No base classifier has been set!"); |
---|
| 258 | } |
---|
| 259 | m_ZeroR = new ZeroR(); |
---|
| 260 | m_ZeroR.buildClassifier(insts); |
---|
| 261 | |
---|
| 262 | int numClassifiers = insts.numClasses() - 1; |
---|
| 263 | |
---|
| 264 | numClassifiers = (numClassifiers == 0) ? 1 : numClassifiers; |
---|
| 265 | |
---|
| 266 | if (numClassifiers == 1) { |
---|
| 267 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, 1); |
---|
| 268 | m_Classifiers[0].buildClassifier(insts); |
---|
| 269 | } else { |
---|
| 270 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, numClassifiers); |
---|
| 271 | m_ClassFilters = new MakeIndicator[numClassifiers]; |
---|
| 272 | |
---|
| 273 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
| 274 | m_ClassFilters[i] = new MakeIndicator(); |
---|
| 275 | m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); |
---|
| 276 | m_ClassFilters[i].setValueIndices(""+(i+2)+"-last"); |
---|
| 277 | m_ClassFilters[i].setNumeric(false); |
---|
| 278 | m_ClassFilters[i].setInputFormat(insts); |
---|
| 279 | newInsts = Filter.useFilter(insts, m_ClassFilters[i]); |
---|
| 280 | m_Classifiers[i].buildClassifier(newInsts); |
---|
| 281 | } |
---|
| 282 | } |
---|
| 283 | } |
---|
| 284 | |
---|
| 285 | /** |
---|
| 286 | * Returns the distribution for an instance. |
---|
| 287 | * |
---|
| 288 | * @param inst the instance to compute the distribution for |
---|
| 289 | * @return the class distribution for the given instance |
---|
| 290 | * @throws Exception if the distribution can't be computed successfully |
---|
| 291 | */ |
---|
| 292 | public double [] distributionForInstance(Instance inst) throws Exception { |
---|
| 293 | |
---|
| 294 | if (m_Classifiers.length == 1) { |
---|
| 295 | return m_Classifiers[0].distributionForInstance(inst); |
---|
| 296 | } |
---|
| 297 | |
---|
| 298 | double [] probs = new double[inst.numClasses()]; |
---|
| 299 | |
---|
| 300 | double [][] distributions = new double[m_ClassFilters.length][0]; |
---|
| 301 | for(int i = 0; i < m_ClassFilters.length; i++) { |
---|
| 302 | m_ClassFilters[i].input(inst); |
---|
| 303 | m_ClassFilters[i].batchFinished(); |
---|
| 304 | |
---|
| 305 | distributions[i] = m_Classifiers[i]. |
---|
| 306 | distributionForInstance(m_ClassFilters[i].output()); |
---|
| 307 | |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | // Use Schapire et al.'s smoothing heuristic? |
---|
| 311 | if (getUseSmoothing()) { |
---|
| 312 | |
---|
| 313 | double[] fScores = new double[distributions.length + 2]; |
---|
| 314 | fScores[0] = 1; |
---|
| 315 | fScores[distributions.length + 1] = 0; |
---|
| 316 | for (int i = 0; i < distributions.length; i++) { |
---|
| 317 | fScores[i + 1] = distributions[i][1]; |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | // Sort scores in ascending order |
---|
| 321 | int[] sortOrder = Utils.sort(fScores); |
---|
| 322 | |
---|
| 323 | // Compute pointwise maximum of lower bound |
---|
| 324 | int minSoFar = sortOrder[0]; |
---|
| 325 | int index = 0; |
---|
| 326 | double[] pointwiseMaxLowerBound = new double[fScores.length]; |
---|
| 327 | for (int i = 0; i < sortOrder.length; i++) { |
---|
| 328 | |
---|
| 329 | // Progress to next higher value if possible |
---|
| 330 | while (minSoFar > sortOrder.length - i - 1) { |
---|
| 331 | minSoFar = sortOrder[++index]; |
---|
| 332 | } |
---|
| 333 | pointwiseMaxLowerBound[sortOrder.length - i - 1] = fScores[minSoFar]; |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | // Get scores in descending order |
---|
| 337 | int[] newSortOrder = new int[sortOrder.length]; |
---|
| 338 | for (int i = sortOrder.length - 1; i >= 0; i--) { |
---|
| 339 | newSortOrder[sortOrder.length - i - 1] = sortOrder[i]; |
---|
| 340 | } |
---|
| 341 | sortOrder = newSortOrder; |
---|
| 342 | |
---|
| 343 | // Compute pointwise minimum of upper bound |
---|
| 344 | int maxSoFar = sortOrder[0]; |
---|
| 345 | index = 0; |
---|
| 346 | double[] pointwiseMinUpperBound = new double[fScores.length]; |
---|
| 347 | for (int i = 0; i < sortOrder.length; i++) { |
---|
| 348 | |
---|
| 349 | // Progress to next lower value if possible |
---|
| 350 | while (maxSoFar < i) { |
---|
| 351 | maxSoFar = sortOrder[++index]; |
---|
| 352 | } |
---|
| 353 | pointwiseMinUpperBound[i] = fScores[maxSoFar]; |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | // Compute average |
---|
| 357 | for (int i = 0; i < distributions.length; i++) { |
---|
| 358 | distributions[i][1] = (pointwiseMinUpperBound[i + 1] + |
---|
| 359 | pointwiseMaxLowerBound[i + 1]) / 2.0; |
---|
| 360 | } |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | for (int i = 0; i < inst.numClasses(); i++) { |
---|
| 364 | if (i == 0) { |
---|
| 365 | probs[i] = 1.0 - distributions[0][1]; |
---|
| 366 | } else if (i == inst.numClasses() - 1) { |
---|
| 367 | probs[i] = distributions[i - 1][1]; |
---|
| 368 | } else { |
---|
| 369 | probs[i] = distributions[i - 1][1] - distributions[i][1]; |
---|
| 370 | if (!(probs[i] >= 0)) { |
---|
| 371 | System.err.println("Warning: estimated probability " + probs[i] + |
---|
| 372 | ". Rounding to 0."); |
---|
| 373 | probs[i] = 0; |
---|
| 374 | } |
---|
| 375 | } |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | if (Utils.gr(Utils.sum(probs), 0)) { |
---|
| 379 | Utils.normalize(probs); |
---|
| 380 | return probs; |
---|
| 381 | } else { |
---|
| 382 | return m_ZeroR.distributionForInstance(inst); |
---|
| 383 | } |
---|
| 384 | } |
---|
| 385 | |
---|
| 386 | /** |
---|
| 387 | * Returns an enumeration describing the available options. |
---|
| 388 | * |
---|
| 389 | * @return an enumeration of all the available options. |
---|
| 390 | */ |
---|
| 391 | public Enumeration listOptions() { |
---|
| 392 | |
---|
| 393 | Vector vec = new Vector(); |
---|
| 394 | vec.addElement(new Option( |
---|
| 395 | "\tTurn off Schapire et al.'s smoothing " + |
---|
| 396 | "heuristic (ICML02, pp. 550).", |
---|
| 397 | "S", 0, "-S")); |
---|
| 398 | |
---|
| 399 | Enumeration enu = super.listOptions(); |
---|
| 400 | while (enu.hasMoreElements()) { |
---|
| 401 | vec.addElement(enu.nextElement()); |
---|
| 402 | } |
---|
| 403 | return vec.elements(); |
---|
| 404 | } |
---|
| 405 | /** |
---|
| 406 | * Parses a given list of options. <p/> |
---|
| 407 | * |
---|
| 408 | <!-- options-start --> |
---|
| 409 | * Valid options are: <p/> |
---|
| 410 | * |
---|
| 411 | * <pre> -S |
---|
| 412 | * Turn off Schapire et al.'s smoothing heuristic (ICML02, pp. 550).</pre> |
---|
| 413 | * |
---|
| 414 | * <pre> -D |
---|
| 415 | * If set, classifier is run in debug mode and |
---|
| 416 | * may output additional info to the console</pre> |
---|
| 417 | * |
---|
| 418 | * <pre> -W |
---|
| 419 | * Full name of base classifier. |
---|
| 420 | * (default: weka.classifiers.trees.J48)</pre> |
---|
| 421 | * |
---|
| 422 | * <pre> |
---|
| 423 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
| 424 | * </pre> |
---|
| 425 | * |
---|
| 426 | * <pre> -U |
---|
| 427 | * Use unpruned tree.</pre> |
---|
| 428 | * |
---|
| 429 | * <pre> -C <pruning confidence> |
---|
| 430 | * Set confidence threshold for pruning. |
---|
| 431 | * (default 0.25)</pre> |
---|
| 432 | * |
---|
| 433 | * <pre> -M <minimum number of instances> |
---|
| 434 | * Set minimum number of instances per leaf. |
---|
| 435 | * (default 2)</pre> |
---|
| 436 | * |
---|
| 437 | * <pre> -R |
---|
| 438 | * Use reduced error pruning.</pre> |
---|
| 439 | * |
---|
| 440 | * <pre> -N <number of folds> |
---|
| 441 | * Set number of folds for reduced error |
---|
| 442 | * pruning. One fold is used as pruning set. |
---|
| 443 | * (default 3)</pre> |
---|
| 444 | * |
---|
| 445 | * <pre> -B |
---|
| 446 | * Use binary splits only.</pre> |
---|
| 447 | * |
---|
| 448 | * <pre> -S |
---|
| 449 | * Don't perform subtree raising.</pre> |
---|
| 450 | * |
---|
| 451 | * <pre> -L |
---|
| 452 | * Do not clean up after the tree has been built.</pre> |
---|
| 453 | * |
---|
| 454 | * <pre> -A |
---|
| 455 | * Laplace smoothing for predicted probabilities.</pre> |
---|
| 456 | * |
---|
| 457 | * <pre> -Q <seed> |
---|
| 458 | * Seed for random data shuffling (default 1).</pre> |
---|
| 459 | * |
---|
| 460 | <!-- options-end --> |
---|
| 461 | * |
---|
| 462 | * @param options the list of options as an array of strings |
---|
| 463 | * @throws Exception if an option is not supported |
---|
| 464 | */ |
---|
| 465 | public void setOptions(String[] options) throws Exception { |
---|
| 466 | |
---|
| 467 | setUseSmoothing(!Utils.getFlag('S', options)); |
---|
| 468 | super.setOptions(options); |
---|
| 469 | } |
---|
| 470 | |
---|
| 471 | /** |
---|
| 472 | * Gets the current settings of the Classifier. |
---|
| 473 | * |
---|
| 474 | * @return an array of strings suitable for passing to setOptions |
---|
| 475 | */ |
---|
| 476 | public String [] getOptions() { |
---|
| 477 | |
---|
| 478 | String [] superOptions = super.getOptions(); |
---|
| 479 | String [] options = new String [superOptions.length + 1]; |
---|
| 480 | |
---|
| 481 | int current = 0; |
---|
| 482 | if (!getUseSmoothing()) { |
---|
| 483 | options[current++] = "-S"; |
---|
| 484 | } |
---|
| 485 | System.arraycopy(superOptions, 0, options, current, |
---|
| 486 | superOptions.length); |
---|
| 487 | |
---|
| 488 | current += superOptions.length; |
---|
| 489 | while (current < options.length) { |
---|
| 490 | options[current++] = ""; |
---|
| 491 | } |
---|
| 492 | |
---|
| 493 | return options; |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | /** |
---|
| 497 | * Tip text method. |
---|
| 498 | * |
---|
| 499 | * @return a tip text string suitable for displaying as a popup in the GUI. |
---|
| 500 | */ |
---|
| 501 | public String useSmoothingTipText() { |
---|
| 502 | return "If true, use Schapire et al.'s heuristic (ICML02, pp. 550)."; |
---|
| 503 | } |
---|
| 504 | |
---|
| 505 | /** |
---|
| 506 | * Determines whether Schapire et al.'s smoothing method is used. |
---|
| 507 | * |
---|
| 508 | * @param b true if the smoothing heuristic is to be used. |
---|
| 509 | */ |
---|
| 510 | public void setUseSmoothing(boolean b) { |
---|
| 511 | |
---|
| 512 | m_UseSmoothing = b; |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | /** |
---|
| 516 | * Checks whether Schapire et al.'s smoothing method is used. |
---|
| 517 | * |
---|
| 518 | * @return true if the smoothing heuristic is to be used. |
---|
| 519 | */ |
---|
| 520 | public boolean getUseSmoothing() { |
---|
| 521 | |
---|
| 522 | return m_UseSmoothing; |
---|
| 523 | } |
---|
| 524 | |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * Prints the classifiers. |
---|
| 528 | * |
---|
| 529 | * @return a string representation of this classifier |
---|
| 530 | */ |
---|
| 531 | public String toString() { |
---|
| 532 | |
---|
| 533 | if (m_Classifiers == null) { |
---|
| 534 | return "OrdinalClassClassifier: No model built yet."; |
---|
| 535 | } |
---|
| 536 | StringBuffer text = new StringBuffer(); |
---|
| 537 | text.append("OrdinalClassClassifier\n\n"); |
---|
| 538 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
| 539 | text.append("Classifier ").append(i + 1); |
---|
| 540 | if (m_Classifiers[i] != null) { |
---|
| 541 | if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) { |
---|
| 542 | text.append(", using indicator values: "); |
---|
| 543 | text.append(m_ClassFilters[i].getValueRange()); |
---|
| 544 | } |
---|
| 545 | text.append('\n'); |
---|
| 546 | text.append(m_Classifiers[i].toString() + "\n"); |
---|
| 547 | } else { |
---|
| 548 | text.append(" Skipped (no training examples)\n"); |
---|
| 549 | } |
---|
| 550 | } |
---|
| 551 | |
---|
| 552 | return text.toString(); |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | /** |
---|
| 556 | * Returns the revision string. |
---|
| 557 | * |
---|
| 558 | * @return the revision |
---|
| 559 | */ |
---|
| 560 | public String getRevision() { |
---|
| 561 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 562 | } |
---|
| 563 | |
---|
| 564 | /** |
---|
| 565 | * Main method for testing this class. |
---|
| 566 | * |
---|
| 567 | * @param argv the options |
---|
| 568 | */ |
---|
| 569 | public static void main(String [] argv) { |
---|
| 570 | runClassifier(new OrdinalClassClassifier(), argv); |
---|
| 571 | } |
---|
| 572 | } |
---|
| 573 | |
---|