1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * MultiScheme.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.classifiers.RandomizableMultipleClassifiersCombiner; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.Option; |
---|
32 | import weka.core.OptionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.Utils; |
---|
35 | |
---|
36 | import java.util.Enumeration; |
---|
37 | import java.util.Random; |
---|
38 | import java.util.Vector; |
---|
39 | |
---|
40 | /** |
---|
41 | <!-- globalinfo-start --> |
---|
42 | * Class for selecting a classifier from among several using cross validation on the training data or the performance on the training data. Performance is measured based on percent correct (classification) or mean-squared error (regression). |
---|
43 | * <p/> |
---|
44 | <!-- globalinfo-end --> |
---|
45 | * |
---|
46 | <!-- options-start --> |
---|
47 | * Valid options are: <p/> |
---|
48 | * |
---|
49 | * <pre> -X <number of folds> |
---|
50 | * Use cross validation for model selection using the |
---|
51 | * given number of folds. (default 0, is to |
---|
52 | * use training error)</pre> |
---|
53 | * |
---|
54 | * <pre> -S <num> |
---|
55 | * Random number seed. |
---|
56 | * (default 1)</pre> |
---|
57 | * |
---|
58 | * <pre> -B <classifier specification> |
---|
59 | * Full class name of classifier to include, followed |
---|
60 | * by scheme options. May be specified multiple times. |
---|
61 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
62 | * |
---|
63 | * <pre> -D |
---|
64 | * If set, classifier is run in debug mode and |
---|
65 | * may output additional info to the console</pre> |
---|
66 | * |
---|
67 | <!-- options-end --> |
---|
68 | * |
---|
69 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
70 | * @version $Revision: 5928 $ |
---|
71 | */ |
---|
72 | public class MultiScheme |
---|
73 | extends RandomizableMultipleClassifiersCombiner { |
---|
74 | |
---|
75 | /** for serialization */ |
---|
76 | static final long serialVersionUID = 5710744346128957520L; |
---|
77 | |
---|
78 | /** The classifier that had the best performance on training data. */ |
---|
79 | protected Classifier m_Classifier; |
---|
80 | |
---|
81 | /** The index into the vector for the selected scheme */ |
---|
82 | protected int m_ClassifierIndex; |
---|
83 | |
---|
84 | /** |
---|
85 | * Number of folds to use for cross validation (0 means use training |
---|
86 | * error for selection) |
---|
87 | */ |
---|
88 | protected int m_NumXValFolds; |
---|
89 | |
---|
90 | /** |
---|
91 | * Returns a string describing classifier |
---|
92 | * @return a description suitable for |
---|
93 | * displaying in the explorer/experimenter gui |
---|
94 | */ |
---|
95 | public String globalInfo() { |
---|
96 | |
---|
97 | return "Class for selecting a classifier from among several using cross " |
---|
98 | + "validation on the training data or the performance on the " |
---|
99 | + "training data. Performance is measured based on percent correct " |
---|
100 | + "(classification) or mean-squared error (regression)."; |
---|
101 | } |
---|
102 | |
---|
103 | /** |
---|
104 | * Returns an enumeration describing the available options. |
---|
105 | * |
---|
106 | * @return an enumeration of all the available options. |
---|
107 | */ |
---|
108 | public Enumeration listOptions() { |
---|
109 | |
---|
110 | Vector newVector = new Vector(1); |
---|
111 | newVector.addElement(new Option( |
---|
112 | "\tUse cross validation for model selection using the\n" |
---|
113 | + "\tgiven number of folds. (default 0, is to\n" |
---|
114 | + "\tuse training error)", |
---|
115 | "X", 1, "-X <number of folds>")); |
---|
116 | |
---|
117 | Enumeration enu = super.listOptions(); |
---|
118 | while (enu.hasMoreElements()) { |
---|
119 | newVector.addElement(enu.nextElement()); |
---|
120 | } |
---|
121 | return newVector.elements(); |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Parses a given list of options. <p/> |
---|
126 | * |
---|
127 | <!-- options-start --> |
---|
128 | * Valid options are: <p/> |
---|
129 | * |
---|
130 | * <pre> -X <number of folds> |
---|
131 | * Use cross validation for model selection using the |
---|
132 | * given number of folds. (default 0, is to |
---|
133 | * use training error)</pre> |
---|
134 | * |
---|
135 | * <pre> -S <num> |
---|
136 | * Random number seed. |
---|
137 | * (default 1)</pre> |
---|
138 | * |
---|
139 | * <pre> -B <classifier specification> |
---|
140 | * Full class name of classifier to include, followed |
---|
141 | * by scheme options. May be specified multiple times. |
---|
142 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
143 | * |
---|
144 | * <pre> -D |
---|
145 | * If set, classifier is run in debug mode and |
---|
146 | * may output additional info to the console</pre> |
---|
147 | * |
---|
148 | <!-- options-end --> |
---|
149 | * |
---|
150 | * @param options the list of options as an array of strings |
---|
151 | * @throws Exception if an option is not supported |
---|
152 | */ |
---|
153 | public void setOptions(String[] options) throws Exception { |
---|
154 | |
---|
155 | String numFoldsString = Utils.getOption('X', options); |
---|
156 | if (numFoldsString.length() != 0) { |
---|
157 | setNumFolds(Integer.parseInt(numFoldsString)); |
---|
158 | } else { |
---|
159 | setNumFolds(0); |
---|
160 | } |
---|
161 | super.setOptions(options); |
---|
162 | } |
---|
163 | |
---|
164 | /** |
---|
165 | * Gets the current settings of the Classifier. |
---|
166 | * |
---|
167 | * @return an array of strings suitable for passing to setOptions |
---|
168 | */ |
---|
169 | public String [] getOptions() { |
---|
170 | |
---|
171 | |
---|
172 | String [] superOptions = super.getOptions(); |
---|
173 | String [] options = new String [superOptions.length + 2]; |
---|
174 | |
---|
175 | int current = 0; |
---|
176 | options[current++] = "-X"; options[current++] = "" + getNumFolds(); |
---|
177 | |
---|
178 | System.arraycopy(superOptions, 0, options, current, |
---|
179 | superOptions.length); |
---|
180 | |
---|
181 | return options; |
---|
182 | } |
---|
183 | |
---|
184 | /** |
---|
185 | * Returns the tip text for this property |
---|
186 | * @return tip text for this property suitable for |
---|
187 | * displaying in the explorer/experimenter gui |
---|
188 | */ |
---|
189 | public String classifiersTipText() { |
---|
190 | return "The classifiers to be chosen from."; |
---|
191 | } |
---|
192 | |
---|
193 | /** |
---|
194 | * Sets the list of possible classifers to choose from. |
---|
195 | * |
---|
196 | * @param classifiers an array of classifiers with all options set. |
---|
197 | */ |
---|
198 | public void setClassifiers(Classifier [] classifiers) { |
---|
199 | |
---|
200 | m_Classifiers = classifiers; |
---|
201 | } |
---|
202 | |
---|
203 | /** |
---|
204 | * Gets the list of possible classifers to choose from. |
---|
205 | * |
---|
206 | * @return the array of Classifiers |
---|
207 | */ |
---|
208 | public Classifier [] getClassifiers() { |
---|
209 | |
---|
210 | return m_Classifiers; |
---|
211 | } |
---|
212 | |
---|
213 | /** |
---|
214 | * Gets a single classifier from the set of available classifiers. |
---|
215 | * |
---|
216 | * @param index the index of the classifier wanted |
---|
217 | * @return the Classifier |
---|
218 | */ |
---|
219 | public Classifier getClassifier(int index) { |
---|
220 | |
---|
221 | return m_Classifiers[index]; |
---|
222 | } |
---|
223 | |
---|
224 | /** |
---|
225 | * Gets the classifier specification string, which contains the class name of |
---|
226 | * the classifier and any options to the classifier |
---|
227 | * |
---|
228 | * @param index the index of the classifier string to retrieve, starting from |
---|
229 | * 0. |
---|
230 | * @return the classifier string, or the empty string if no classifier |
---|
231 | * has been assigned (or the index given is out of range). |
---|
232 | */ |
---|
233 | protected String getClassifierSpec(int index) { |
---|
234 | |
---|
235 | if (m_Classifiers.length < index) { |
---|
236 | return ""; |
---|
237 | } |
---|
238 | Classifier c = getClassifier(index); |
---|
239 | if (c instanceof OptionHandler) { |
---|
240 | return c.getClass().getName() + " " |
---|
241 | + Utils.joinOptions(((OptionHandler)c).getOptions()); |
---|
242 | } |
---|
243 | return c.getClass().getName(); |
---|
244 | } |
---|
245 | |
---|
246 | /** |
---|
247 | * Returns the tip text for this property |
---|
248 | * @return tip text for this property suitable for |
---|
249 | * displaying in the explorer/experimenter gui |
---|
250 | */ |
---|
251 | public String seedTipText() { |
---|
252 | return "The seed used for randomizing the data " + |
---|
253 | "for cross-validation."; |
---|
254 | } |
---|
255 | |
---|
256 | /** |
---|
257 | * Sets the seed for random number generation. |
---|
258 | * |
---|
259 | * @param seed the random number seed |
---|
260 | */ |
---|
261 | public void setSeed(int seed) { |
---|
262 | |
---|
263 | m_Seed = seed;; |
---|
264 | } |
---|
265 | |
---|
266 | /** |
---|
267 | * Gets the random number seed. |
---|
268 | * |
---|
269 | * @return the random number seed |
---|
270 | */ |
---|
271 | public int getSeed() { |
---|
272 | |
---|
273 | return m_Seed; |
---|
274 | } |
---|
275 | |
---|
276 | /** |
---|
277 | * Returns the tip text for this property |
---|
278 | * @return tip text for this property suitable for |
---|
279 | * displaying in the explorer/experimenter gui |
---|
280 | */ |
---|
281 | public String numFoldsTipText() { |
---|
282 | return "The number of folds used for cross-validation (if 0, " + |
---|
283 | "performance on training data will be used)."; |
---|
284 | } |
---|
285 | |
---|
286 | /** |
---|
287 | * Gets the number of folds for cross-validation. A number less |
---|
288 | * than 2 specifies using training error rather than cross-validation. |
---|
289 | * |
---|
290 | * @return the number of folds for cross-validation |
---|
291 | */ |
---|
292 | public int getNumFolds() { |
---|
293 | |
---|
294 | return m_NumXValFolds; |
---|
295 | } |
---|
296 | |
---|
297 | /** |
---|
298 | * Sets the number of folds for cross-validation. A number less |
---|
299 | * than 2 specifies using training error rather than cross-validation. |
---|
300 | * |
---|
301 | * @param numFolds the number of folds for cross-validation |
---|
302 | */ |
---|
303 | public void setNumFolds(int numFolds) { |
---|
304 | |
---|
305 | m_NumXValFolds = numFolds; |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Returns the tip text for this property |
---|
310 | * @return tip text for this property suitable for |
---|
311 | * displaying in the explorer/experimenter gui |
---|
312 | */ |
---|
313 | public String debugTipText() { |
---|
314 | return "Whether debug information is output to console."; |
---|
315 | } |
---|
316 | |
---|
317 | /** |
---|
318 | * Set debugging mode |
---|
319 | * |
---|
320 | * @param debug true if debug output should be printed |
---|
321 | */ |
---|
322 | public void setDebug(boolean debug) { |
---|
323 | |
---|
324 | m_Debug = debug; |
---|
325 | } |
---|
326 | |
---|
327 | /** |
---|
328 | * Get whether debugging is turned on |
---|
329 | * |
---|
330 | * @return true if debugging output is on |
---|
331 | */ |
---|
332 | public boolean getDebug() { |
---|
333 | |
---|
334 | return m_Debug; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * Get the index of the classifier that was determined as best during |
---|
339 | * cross-validation. |
---|
340 | * |
---|
341 | * @return the index in the classifier array |
---|
342 | */ |
---|
343 | public int getBestClassifierIndex() { |
---|
344 | return m_ClassifierIndex; |
---|
345 | } |
---|
346 | |
---|
347 | /** |
---|
348 | * Buildclassifier selects a classifier from the set of classifiers |
---|
349 | * by minimising error on the training data. |
---|
350 | * |
---|
351 | * @param data the training data to be used for generating the |
---|
352 | * boosted classifier. |
---|
353 | * @throws Exception if the classifier could not be built successfully |
---|
354 | */ |
---|
355 | public void buildClassifier(Instances data) throws Exception { |
---|
356 | |
---|
357 | if (m_Classifiers.length == 0) { |
---|
358 | throw new Exception("No base classifiers have been set!"); |
---|
359 | } |
---|
360 | |
---|
361 | // can classifier handle the data? |
---|
362 | getCapabilities().testWithFail(data); |
---|
363 | |
---|
364 | // remove instances with missing class |
---|
365 | Instances newData = new Instances(data); |
---|
366 | newData.deleteWithMissingClass(); |
---|
367 | |
---|
368 | Random random = new Random(m_Seed); |
---|
369 | newData.randomize(random); |
---|
370 | if (newData.classAttribute().isNominal() && (m_NumXValFolds > 1)) { |
---|
371 | newData.stratify(m_NumXValFolds); |
---|
372 | } |
---|
373 | Instances train = newData; // train on all data by default |
---|
374 | Instances test = newData; // test on training data by default |
---|
375 | Classifier bestClassifier = null; |
---|
376 | int bestIndex = -1; |
---|
377 | double bestPerformance = Double.NaN; |
---|
378 | int numClassifiers = m_Classifiers.length; |
---|
379 | for (int i = 0; i < numClassifiers; i++) { |
---|
380 | Classifier currentClassifier = getClassifier(i); |
---|
381 | Evaluation evaluation; |
---|
382 | if (m_NumXValFolds > 1) { |
---|
383 | evaluation = new Evaluation(newData); |
---|
384 | for (int j = 0; j < m_NumXValFolds; j++) { |
---|
385 | |
---|
386 | // We want to randomize the data the same way for every |
---|
387 | // learning scheme. |
---|
388 | train = newData.trainCV(m_NumXValFolds, j, new Random (1)); |
---|
389 | test = newData.testCV(m_NumXValFolds, j); |
---|
390 | currentClassifier.buildClassifier(train); |
---|
391 | evaluation.setPriors(train); |
---|
392 | evaluation.evaluateModel(currentClassifier, test); |
---|
393 | } |
---|
394 | } else { |
---|
395 | currentClassifier.buildClassifier(train); |
---|
396 | evaluation = new Evaluation(train); |
---|
397 | evaluation.evaluateModel(currentClassifier, test); |
---|
398 | } |
---|
399 | |
---|
400 | double error = evaluation.errorRate(); |
---|
401 | if (m_Debug) { |
---|
402 | System.err.println("Error rate: " + Utils.doubleToString(error, 6, 4) |
---|
403 | + " for classifier " |
---|
404 | + currentClassifier.getClass().getName()); |
---|
405 | } |
---|
406 | |
---|
407 | if ((i == 0) || (error < bestPerformance)) { |
---|
408 | bestClassifier = currentClassifier; |
---|
409 | bestPerformance = error; |
---|
410 | bestIndex = i; |
---|
411 | } |
---|
412 | } |
---|
413 | m_ClassifierIndex = bestIndex; |
---|
414 | if (m_NumXValFolds > 1) { |
---|
415 | bestClassifier.buildClassifier(newData); |
---|
416 | } |
---|
417 | m_Classifier = bestClassifier; |
---|
418 | } |
---|
419 | |
---|
420 | /** |
---|
421 | * Returns class probabilities. |
---|
422 | * |
---|
423 | * @param instance the instance to be classified |
---|
424 | * @return the distribution for the instance |
---|
425 | * @throws Exception if instance could not be classified |
---|
426 | * successfully |
---|
427 | */ |
---|
428 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
429 | |
---|
430 | return m_Classifier.distributionForInstance(instance); |
---|
431 | } |
---|
432 | |
---|
433 | /** |
---|
434 | * Output a representation of this classifier |
---|
435 | * @return a string representation of the classifier |
---|
436 | */ |
---|
437 | public String toString() { |
---|
438 | |
---|
439 | if (m_Classifier == null) { |
---|
440 | return "MultiScheme: No model built yet."; |
---|
441 | } |
---|
442 | |
---|
443 | String result = "MultiScheme selection using"; |
---|
444 | if (m_NumXValFolds > 1) { |
---|
445 | result += " cross validation error"; |
---|
446 | } else { |
---|
447 | result += " error on training data"; |
---|
448 | } |
---|
449 | result += " from the following:\n"; |
---|
450 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
451 | result += '\t' + getClassifierSpec(i) + '\n'; |
---|
452 | } |
---|
453 | |
---|
454 | result += "Selected scheme: " |
---|
455 | + getClassifierSpec(m_ClassifierIndex) |
---|
456 | + "\n\n" |
---|
457 | + m_Classifier.toString(); |
---|
458 | return result; |
---|
459 | } |
---|
460 | |
---|
461 | /** |
---|
462 | * Returns the revision string. |
---|
463 | * |
---|
464 | * @return the revision |
---|
465 | */ |
---|
466 | public String getRevision() { |
---|
467 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
468 | } |
---|
469 | |
---|
470 | /** |
---|
471 | * Main method for testing this class. |
---|
472 | * |
---|
473 | * @param argv should contain the following arguments: |
---|
474 | * -t training file [-T test file] [-c class index] |
---|
475 | */ |
---|
476 | public static void main(String [] argv) { |
---|
477 | runClassifier(new MultiScheme(), argv); |
---|
478 | } |
---|
479 | } |
---|