1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * LogitBoost.java |
---|
19 | * Copyright (C) 1999, 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
29 | import weka.classifiers.Sourcable; |
---|
30 | import weka.core.Attribute; |
---|
31 | import weka.core.Capabilities; |
---|
32 | import weka.core.Instance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.RevisionUtils; |
---|
36 | import weka.core.TechnicalInformation; |
---|
37 | import weka.core.TechnicalInformationHandler; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.WeightedInstancesHandler; |
---|
40 | import weka.core.Capabilities.Capability; |
---|
41 | import weka.core.TechnicalInformation.Field; |
---|
42 | import weka.core.TechnicalInformation.Type; |
---|
43 | |
---|
44 | import java.util.Enumeration; |
---|
45 | import java.util.Random; |
---|
46 | import java.util.Vector; |
---|
47 | |
---|
48 | /** |
---|
49 | <!-- globalinfo-start --> |
---|
50 | * Class for performing additive logistic regression. <br/> |
---|
51 | * This class performs classification using a regression scheme as the base learner, and can handle multi-class problems. For more information, see<br/> |
---|
52 | * <br/> |
---|
53 | * J. Friedman, T. Hastie, R. Tibshirani (1998). Additive Logistic Regression: a Statistical View of Boosting. Stanford University.<br/> |
---|
54 | * <br/> |
---|
55 | * Can do efficient internal cross-validation to determine appropriate number of iterations. |
---|
56 | * <p/> |
---|
57 | <!-- globalinfo-end --> |
---|
58 | * |
---|
59 | <!-- technical-bibtex-start --> |
---|
60 | * BibTeX: |
---|
61 | * <pre> |
---|
62 | * @techreport{Friedman1998, |
---|
63 | * address = {Stanford University}, |
---|
64 | * author = {J. Friedman and T. Hastie and R. Tibshirani}, |
---|
65 | * title = {Additive Logistic Regression: a Statistical View of Boosting}, |
---|
66 | * year = {1998}, |
---|
67 | * PS = {http://www-stat.stanford.edu/\~jhf/ftp/boost.ps} |
---|
68 | * } |
---|
69 | * </pre> |
---|
70 | * <p/> |
---|
71 | <!-- technical-bibtex-end --> |
---|
72 | * |
---|
73 | <!-- options-start --> |
---|
74 | * Valid options are: <p/> |
---|
75 | * |
---|
76 | * <pre> -Q |
---|
77 | * Use resampling instead of reweighting for boosting.</pre> |
---|
78 | * |
---|
79 | * <pre> -P <percent> |
---|
80 | * Percentage of weight mass to base training on. |
---|
81 | * (default 100, reduce to around 90 speed up)</pre> |
---|
82 | * |
---|
83 | * <pre> -F <num> |
---|
84 | * Number of folds for internal cross-validation. |
---|
85 | * (default 0 -- no cross-validation)</pre> |
---|
86 | * |
---|
87 | * <pre> -R <num> |
---|
88 | * Number of runs for internal cross-validation. |
---|
89 | * (default 1)</pre> |
---|
90 | * |
---|
91 | * <pre> -L <num> |
---|
92 | * Threshold on the improvement of the likelihood. |
---|
93 | * (default -Double.MAX_VALUE)</pre> |
---|
94 | * |
---|
95 | * <pre> -H <num> |
---|
96 | * Shrinkage parameter. |
---|
97 | * (default 1)</pre> |
---|
98 | * |
---|
99 | * <pre> -S <num> |
---|
100 | * Random number seed. |
---|
101 | * (default 1)</pre> |
---|
102 | * |
---|
103 | * <pre> -I <num> |
---|
104 | * Number of iterations. |
---|
105 | * (default 10)</pre> |
---|
106 | * |
---|
107 | * <pre> -D |
---|
108 | * If set, classifier is run in debug mode and |
---|
109 | * may output additional info to the console</pre> |
---|
110 | * |
---|
111 | * <pre> -W |
---|
112 | * Full name of base classifier. |
---|
113 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
---|
114 | * |
---|
115 | * <pre> |
---|
116 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
---|
117 | * </pre> |
---|
118 | * |
---|
119 | * <pre> -D |
---|
120 | * If set, classifier is run in debug mode and |
---|
121 | * may output additional info to the console</pre> |
---|
122 | * |
---|
123 | <!-- options-end --> |
---|
124 | * |
---|
125 | * Options after -- are passed to the designated learner.<p> |
---|
126 | * |
---|
127 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
128 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
129 | * @version $Revision: 6091 $ |
---|
130 | */ |
---|
131 | public class LogitBoost |
---|
132 | extends RandomizableIteratedSingleClassifierEnhancer |
---|
133 | implements Sourcable, WeightedInstancesHandler, TechnicalInformationHandler { |
---|
134 | |
---|
135 | /** for serialization */ |
---|
136 | static final long serialVersionUID = -3905660358715833753L; |
---|
137 | |
---|
138 | /** Array for storing the generated base classifiers. |
---|
139 | Note: we are hiding the variable from IteratedSingleClassifierEnhancer*/ |
---|
140 | protected Classifier [][] m_Classifiers; |
---|
141 | |
---|
142 | /** The number of classes */ |
---|
143 | protected int m_NumClasses; |
---|
144 | |
---|
145 | /** The number of successfully generated base classifiers. */ |
---|
146 | protected int m_NumGenerated; |
---|
147 | |
---|
148 | /** The number of folds for the internal cross-validation. */ |
---|
149 | protected int m_NumFolds = 0; |
---|
150 | |
---|
151 | /** The number of runs for the internal cross-validation. */ |
---|
152 | protected int m_NumRuns = 1; |
---|
153 | |
---|
154 | /** Weight thresholding. The percentage of weight mass used in training */ |
---|
155 | protected int m_WeightThreshold = 100; |
---|
156 | |
---|
157 | /** A threshold for responses (Friedman suggests between 2 and 4) */ |
---|
158 | protected static final double Z_MAX = 3; |
---|
159 | |
---|
160 | /** Dummy dataset with a numeric class */ |
---|
161 | protected Instances m_NumericClassData; |
---|
162 | |
---|
163 | /** The actual class attribute (for getting class names) */ |
---|
164 | protected Attribute m_ClassAttribute; |
---|
165 | |
---|
166 | /** Use boosting with reweighting? */ |
---|
167 | protected boolean m_UseResampling; |
---|
168 | |
---|
169 | /** The threshold on the improvement of the likelihood */ |
---|
170 | protected double m_Precision = -Double.MAX_VALUE; |
---|
171 | |
---|
172 | /** The value of the shrinkage parameter */ |
---|
173 | protected double m_Shrinkage = 1; |
---|
174 | |
---|
175 | /** The random number generator used */ |
---|
176 | protected Random m_RandomInstance = null; |
---|
177 | |
---|
178 | /** The value by which the actual target value for the |
---|
179 | true class is offset. */ |
---|
180 | protected double m_Offset = 0.0; |
---|
181 | |
---|
182 | /** a ZeroR model in case no model can be built from the data */ |
---|
183 | protected Classifier m_ZeroR; |
---|
184 | |
---|
185 | /** |
---|
186 | * Returns a string describing classifier |
---|
187 | * @return a description suitable for |
---|
188 | * displaying in the explorer/experimenter gui |
---|
189 | */ |
---|
190 | public String globalInfo() { |
---|
191 | |
---|
192 | return "Class for performing additive logistic regression. \n" |
---|
193 | + "This class performs classification using a regression scheme as the " |
---|
194 | + "base learner, and can handle multi-class problems. For more " |
---|
195 | + "information, see\n\n" |
---|
196 | + getTechnicalInformation().toString() + "\n\n" |
---|
197 | + "Can do efficient internal cross-validation to determine " |
---|
198 | + "appropriate number of iterations."; |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Constructor. |
---|
203 | */ |
---|
204 | public LogitBoost() { |
---|
205 | |
---|
206 | m_Classifier = new weka.classifiers.trees.DecisionStump(); |
---|
207 | } |
---|
208 | |
---|
209 | /** |
---|
210 | * Returns an instance of a TechnicalInformation object, containing |
---|
211 | * detailed information about the technical background of this class, |
---|
212 | * e.g., paper reference or book this class is based on. |
---|
213 | * |
---|
214 | * @return the technical information about this class |
---|
215 | */ |
---|
216 | public TechnicalInformation getTechnicalInformation() { |
---|
217 | TechnicalInformation result; |
---|
218 | |
---|
219 | result = new TechnicalInformation(Type.TECHREPORT); |
---|
220 | result.setValue(Field.AUTHOR, "J. Friedman and T. Hastie and R. Tibshirani"); |
---|
221 | result.setValue(Field.YEAR, "1998"); |
---|
222 | result.setValue(Field.TITLE, "Additive Logistic Regression: a Statistical View of Boosting"); |
---|
223 | result.setValue(Field.ADDRESS, "Stanford University"); |
---|
224 | result.setValue(Field.PS, "http://www-stat.stanford.edu/~jhf/ftp/boost.ps"); |
---|
225 | |
---|
226 | return result; |
---|
227 | } |
---|
228 | |
---|
229 | /** |
---|
230 | * String describing default classifier. |
---|
231 | * |
---|
232 | * @return the default classifier classname |
---|
233 | */ |
---|
234 | protected String defaultClassifierString() { |
---|
235 | |
---|
236 | return "weka.classifiers.trees.DecisionStump"; |
---|
237 | } |
---|
238 | |
---|
239 | /** |
---|
240 | * Select only instances with weights that contribute to |
---|
241 | * the specified quantile of the weight distribution |
---|
242 | * |
---|
243 | * @param data the input instances |
---|
244 | * @param quantile the specified quantile eg 0.9 to select |
---|
245 | * 90% of the weight mass |
---|
246 | * @return the selected instances |
---|
247 | */ |
---|
248 | protected Instances selectWeightQuantile(Instances data, double quantile) { |
---|
249 | |
---|
250 | int numInstances = data.numInstances(); |
---|
251 | Instances trainData = new Instances(data, numInstances); |
---|
252 | double [] weights = new double [numInstances]; |
---|
253 | |
---|
254 | double sumOfWeights = 0; |
---|
255 | for (int i = 0; i < numInstances; i++) { |
---|
256 | weights[i] = data.instance(i).weight(); |
---|
257 | sumOfWeights += weights[i]; |
---|
258 | } |
---|
259 | double weightMassToSelect = sumOfWeights * quantile; |
---|
260 | int [] sortedIndices = Utils.sort(weights); |
---|
261 | |
---|
262 | // Select the instances |
---|
263 | sumOfWeights = 0; |
---|
264 | for (int i = numInstances-1; i >= 0; i--) { |
---|
265 | Instance instance = (Instance)data.instance(sortedIndices[i]).copy(); |
---|
266 | trainData.add(instance); |
---|
267 | sumOfWeights += weights[sortedIndices[i]]; |
---|
268 | if ((sumOfWeights > weightMassToSelect) && |
---|
269 | (i > 0) && |
---|
270 | (weights[sortedIndices[i]] != weights[sortedIndices[i-1]])) { |
---|
271 | break; |
---|
272 | } |
---|
273 | } |
---|
274 | if (m_Debug) { |
---|
275 | System.err.println("Selected " + trainData.numInstances() |
---|
276 | + " out of " + numInstances); |
---|
277 | } |
---|
278 | return trainData; |
---|
279 | } |
---|
280 | |
---|
281 | /** |
---|
282 | * Returns an enumeration describing the available options. |
---|
283 | * |
---|
284 | * @return an enumeration of all the available options. |
---|
285 | */ |
---|
286 | public Enumeration listOptions() { |
---|
287 | |
---|
288 | Vector newVector = new Vector(6); |
---|
289 | |
---|
290 | newVector.addElement(new Option( |
---|
291 | "\tUse resampling instead of reweighting for boosting.", |
---|
292 | "Q", 0, "-Q")); |
---|
293 | newVector.addElement(new Option( |
---|
294 | "\tPercentage of weight mass to base training on.\n" |
---|
295 | +"\t(default 100, reduce to around 90 speed up)", |
---|
296 | "P", 1, "-P <percent>")); |
---|
297 | newVector.addElement(new Option( |
---|
298 | "\tNumber of folds for internal cross-validation.\n" |
---|
299 | +"\t(default 0 -- no cross-validation)", |
---|
300 | "F", 1, "-F <num>")); |
---|
301 | newVector.addElement(new Option( |
---|
302 | "\tNumber of runs for internal cross-validation.\n" |
---|
303 | +"\t(default 1)", |
---|
304 | "R", 1, "-R <num>")); |
---|
305 | newVector.addElement(new Option( |
---|
306 | "\tThreshold on the improvement of the likelihood.\n" |
---|
307 | +"\t(default -Double.MAX_VALUE)", |
---|
308 | "L", 1, "-L <num>")); |
---|
309 | newVector.addElement(new Option( |
---|
310 | "\tShrinkage parameter.\n" |
---|
311 | +"\t(default 1)", |
---|
312 | "H", 1, "-H <num>")); |
---|
313 | |
---|
314 | Enumeration enu = super.listOptions(); |
---|
315 | while (enu.hasMoreElements()) { |
---|
316 | newVector.addElement(enu.nextElement()); |
---|
317 | } |
---|
318 | return newVector.elements(); |
---|
319 | } |
---|
320 | |
---|
321 | |
---|
322 | /** |
---|
323 | * Parses a given list of options. <p/> |
---|
324 | * |
---|
325 | <!-- options-start --> |
---|
326 | * Valid options are: <p/> |
---|
327 | * |
---|
328 | * <pre> -Q |
---|
329 | * Use resampling instead of reweighting for boosting.</pre> |
---|
330 | * |
---|
331 | * <pre> -P <percent> |
---|
332 | * Percentage of weight mass to base training on. |
---|
333 | * (default 100, reduce to around 90 speed up)</pre> |
---|
334 | * |
---|
335 | * <pre> -F <num> |
---|
336 | * Number of folds for internal cross-validation. |
---|
337 | * (default 0 -- no cross-validation)</pre> |
---|
338 | * |
---|
339 | * <pre> -R <num> |
---|
340 | * Number of runs for internal cross-validation. |
---|
341 | * (default 1)</pre> |
---|
342 | * |
---|
343 | * <pre> -L <num> |
---|
344 | * Threshold on the improvement of the likelihood. |
---|
345 | * (default -Double.MAX_VALUE)</pre> |
---|
346 | * |
---|
347 | * <pre> -H <num> |
---|
348 | * Shrinkage parameter. |
---|
349 | * (default 1)</pre> |
---|
350 | * |
---|
351 | * <pre> -S <num> |
---|
352 | * Random number seed. |
---|
353 | * (default 1)</pre> |
---|
354 | * |
---|
355 | * <pre> -I <num> |
---|
356 | * Number of iterations. |
---|
357 | * (default 10)</pre> |
---|
358 | * |
---|
359 | * <pre> -D |
---|
360 | * If set, classifier is run in debug mode and |
---|
361 | * may output additional info to the console</pre> |
---|
362 | * |
---|
363 | * <pre> -W |
---|
364 | * Full name of base classifier. |
---|
365 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
---|
366 | * |
---|
367 | * <pre> |
---|
368 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
---|
369 | * </pre> |
---|
370 | * |
---|
371 | * <pre> -D |
---|
372 | * If set, classifier is run in debug mode and |
---|
373 | * may output additional info to the console</pre> |
---|
374 | * |
---|
375 | <!-- options-end --> |
---|
376 | * |
---|
377 | * Options after -- are passed to the designated learner.<p> |
---|
378 | * |
---|
379 | * @param options the list of options as an array of strings |
---|
380 | * @throws Exception if an option is not supported |
---|
381 | */ |
---|
382 | public void setOptions(String[] options) throws Exception { |
---|
383 | |
---|
384 | String numFolds = Utils.getOption('F', options); |
---|
385 | if (numFolds.length() != 0) { |
---|
386 | setNumFolds(Integer.parseInt(numFolds)); |
---|
387 | } else { |
---|
388 | setNumFolds(0); |
---|
389 | } |
---|
390 | |
---|
391 | String numRuns = Utils.getOption('R', options); |
---|
392 | if (numRuns.length() != 0) { |
---|
393 | setNumRuns(Integer.parseInt(numRuns)); |
---|
394 | } else { |
---|
395 | setNumRuns(1); |
---|
396 | } |
---|
397 | |
---|
398 | String thresholdString = Utils.getOption('P', options); |
---|
399 | if (thresholdString.length() != 0) { |
---|
400 | setWeightThreshold(Integer.parseInt(thresholdString)); |
---|
401 | } else { |
---|
402 | setWeightThreshold(100); |
---|
403 | } |
---|
404 | |
---|
405 | String precisionString = Utils.getOption('L', options); |
---|
406 | if (precisionString.length() != 0) { |
---|
407 | setLikelihoodThreshold(new Double(precisionString). |
---|
408 | doubleValue()); |
---|
409 | } else { |
---|
410 | setLikelihoodThreshold(-Double.MAX_VALUE); |
---|
411 | } |
---|
412 | |
---|
413 | String shrinkageString = Utils.getOption('H', options); |
---|
414 | if (shrinkageString.length() != 0) { |
---|
415 | setShrinkage(new Double(shrinkageString). |
---|
416 | doubleValue()); |
---|
417 | } else { |
---|
418 | setShrinkage(1.0); |
---|
419 | } |
---|
420 | |
---|
421 | setUseResampling(Utils.getFlag('Q', options)); |
---|
422 | if (m_UseResampling && (thresholdString.length() != 0)) { |
---|
423 | throw new Exception("Weight pruning with resampling"+ |
---|
424 | "not allowed."); |
---|
425 | } |
---|
426 | |
---|
427 | super.setOptions(options); |
---|
428 | } |
---|
429 | |
---|
430 | /** |
---|
431 | * Gets the current settings of the Classifier. |
---|
432 | * |
---|
433 | * @return an array of strings suitable for passing to setOptions |
---|
434 | */ |
---|
435 | public String [] getOptions() { |
---|
436 | |
---|
437 | String [] superOptions = super.getOptions(); |
---|
438 | String [] options = new String [superOptions.length + 10]; |
---|
439 | |
---|
440 | int current = 0; |
---|
441 | if (getUseResampling()) { |
---|
442 | options[current++] = "-Q"; |
---|
443 | } else { |
---|
444 | options[current++] = "-P"; |
---|
445 | options[current++] = "" + getWeightThreshold(); |
---|
446 | } |
---|
447 | options[current++] = "-F"; options[current++] = "" + getNumFolds(); |
---|
448 | options[current++] = "-R"; options[current++] = "" + getNumRuns(); |
---|
449 | options[current++] = "-L"; options[current++] = "" + getLikelihoodThreshold(); |
---|
450 | options[current++] = "-H"; options[current++] = "" + getShrinkage(); |
---|
451 | |
---|
452 | System.arraycopy(superOptions, 0, options, current, |
---|
453 | superOptions.length); |
---|
454 | current += superOptions.length; |
---|
455 | while (current < options.length) { |
---|
456 | options[current++] = ""; |
---|
457 | } |
---|
458 | return options; |
---|
459 | } |
---|
460 | |
---|
461 | /** |
---|
462 | * Returns the tip text for this property |
---|
463 | * @return tip text for this property suitable for |
---|
464 | * displaying in the explorer/experimenter gui |
---|
465 | */ |
---|
466 | public String shrinkageTipText() { |
---|
467 | return "Shrinkage parameter (use small value like 0.1 to reduce " |
---|
468 | + "overfitting)."; |
---|
469 | } |
---|
470 | |
---|
471 | /** |
---|
472 | * Get the value of Shrinkage. |
---|
473 | * |
---|
474 | * @return Value of Shrinkage. |
---|
475 | */ |
---|
476 | public double getShrinkage() { |
---|
477 | |
---|
478 | return m_Shrinkage; |
---|
479 | } |
---|
480 | |
---|
481 | /** |
---|
482 | * Set the value of Shrinkage. |
---|
483 | * |
---|
484 | * @param newShrinkage Value to assign to Shrinkage. |
---|
485 | */ |
---|
486 | public void setShrinkage(double newShrinkage) { |
---|
487 | |
---|
488 | m_Shrinkage = newShrinkage; |
---|
489 | } |
---|
490 | |
---|
491 | /** |
---|
492 | * Returns the tip text for this property |
---|
493 | * @return tip text for this property suitable for |
---|
494 | * displaying in the explorer/experimenter gui |
---|
495 | */ |
---|
496 | public String likelihoodThresholdTipText() { |
---|
497 | return "Threshold on improvement in likelihood."; |
---|
498 | } |
---|
499 | |
---|
500 | /** |
---|
501 | * Get the value of Precision. |
---|
502 | * |
---|
503 | * @return Value of Precision. |
---|
504 | */ |
---|
505 | public double getLikelihoodThreshold() { |
---|
506 | |
---|
507 | return m_Precision; |
---|
508 | } |
---|
509 | |
---|
510 | /** |
---|
511 | * Set the value of Precision. |
---|
512 | * |
---|
513 | * @param newPrecision Value to assign to Precision. |
---|
514 | */ |
---|
515 | public void setLikelihoodThreshold(double newPrecision) { |
---|
516 | |
---|
517 | m_Precision = newPrecision; |
---|
518 | } |
---|
519 | |
---|
520 | /** |
---|
521 | * Returns the tip text for this property |
---|
522 | * @return tip text for this property suitable for |
---|
523 | * displaying in the explorer/experimenter gui |
---|
524 | */ |
---|
525 | public String numRunsTipText() { |
---|
526 | return "Number of runs for internal cross-validation."; |
---|
527 | } |
---|
528 | |
---|
529 | /** |
---|
530 | * Get the value of NumRuns. |
---|
531 | * |
---|
532 | * @return Value of NumRuns. |
---|
533 | */ |
---|
534 | public int getNumRuns() { |
---|
535 | |
---|
536 | return m_NumRuns; |
---|
537 | } |
---|
538 | |
---|
539 | /** |
---|
540 | * Set the value of NumRuns. |
---|
541 | * |
---|
542 | * @param newNumRuns Value to assign to NumRuns. |
---|
543 | */ |
---|
544 | public void setNumRuns(int newNumRuns) { |
---|
545 | |
---|
546 | m_NumRuns = newNumRuns; |
---|
547 | } |
---|
548 | |
---|
549 | /** |
---|
550 | * Returns the tip text for this property |
---|
551 | * @return tip text for this property suitable for |
---|
552 | * displaying in the explorer/experimenter gui |
---|
553 | */ |
---|
554 | public String numFoldsTipText() { |
---|
555 | return "Number of folds for internal cross-validation (default 0 " |
---|
556 | + "means no cross-validation is performed)."; |
---|
557 | } |
---|
558 | |
---|
559 | /** |
---|
560 | * Get the value of NumFolds. |
---|
561 | * |
---|
562 | * @return Value of NumFolds. |
---|
563 | */ |
---|
564 | public int getNumFolds() { |
---|
565 | |
---|
566 | return m_NumFolds; |
---|
567 | } |
---|
568 | |
---|
569 | /** |
---|
570 | * Set the value of NumFolds. |
---|
571 | * |
---|
572 | * @param newNumFolds Value to assign to NumFolds. |
---|
573 | */ |
---|
574 | public void setNumFolds(int newNumFolds) { |
---|
575 | |
---|
576 | m_NumFolds = newNumFolds; |
---|
577 | } |
---|
578 | |
---|
579 | /** |
---|
580 | * Returns the tip text for this property |
---|
581 | * @return tip text for this property suitable for |
---|
582 | * displaying in the explorer/experimenter gui |
---|
583 | */ |
---|
584 | public String useResamplingTipText() { |
---|
585 | return "Whether resampling is used instead of reweighting."; |
---|
586 | } |
---|
587 | |
---|
588 | /** |
---|
589 | * Set resampling mode |
---|
590 | * |
---|
591 | * @param r true if resampling should be done |
---|
592 | */ |
---|
593 | public void setUseResampling(boolean r) { |
---|
594 | |
---|
595 | m_UseResampling = r; |
---|
596 | } |
---|
597 | |
---|
598 | /** |
---|
599 | * Get whether resampling is turned on |
---|
600 | * |
---|
601 | * @return true if resampling output is on |
---|
602 | */ |
---|
603 | public boolean getUseResampling() { |
---|
604 | |
---|
605 | return m_UseResampling; |
---|
606 | } |
---|
607 | |
---|
608 | /** |
---|
609 | * Returns the tip text for this property |
---|
610 | * @return tip text for this property suitable for |
---|
611 | * displaying in the explorer/experimenter gui |
---|
612 | */ |
---|
613 | public String weightThresholdTipText() { |
---|
614 | return "Weight threshold for weight pruning (reduce to 90 " |
---|
615 | + "for speeding up learning process)."; |
---|
616 | } |
---|
617 | |
---|
618 | /** |
---|
619 | * Set weight thresholding |
---|
620 | * |
---|
621 | * @param threshold the percentage of weight mass used for training |
---|
622 | */ |
---|
623 | public void setWeightThreshold(int threshold) { |
---|
624 | |
---|
625 | m_WeightThreshold = threshold; |
---|
626 | } |
---|
627 | |
---|
628 | /** |
---|
629 | * Get the degree of weight thresholding |
---|
630 | * |
---|
631 | * @return the percentage of weight mass used for training |
---|
632 | */ |
---|
633 | public int getWeightThreshold() { |
---|
634 | |
---|
635 | return m_WeightThreshold; |
---|
636 | } |
---|
637 | |
---|
638 | /** |
---|
639 | * Returns default capabilities of the classifier. |
---|
640 | * |
---|
641 | * @return the capabilities of this classifier |
---|
642 | */ |
---|
643 | public Capabilities getCapabilities() { |
---|
644 | Capabilities result = super.getCapabilities(); |
---|
645 | |
---|
646 | // class |
---|
647 | result.disableAllClasses(); |
---|
648 | result.disableAllClassDependencies(); |
---|
649 | result.enable(Capability.NOMINAL_CLASS); |
---|
650 | |
---|
651 | return result; |
---|
652 | } |
---|
653 | |
---|
654 | /** |
---|
655 | * Builds the boosted classifier |
---|
656 | * |
---|
657 | * @param data the data to train the classifier with |
---|
658 | * @throws Exception if building fails, e.g., can't handle data |
---|
659 | */ |
---|
660 | public void buildClassifier(Instances data) throws Exception { |
---|
661 | |
---|
662 | m_RandomInstance = new Random(m_Seed); |
---|
663 | int classIndex = data.classIndex(); |
---|
664 | |
---|
665 | if (m_Classifier == null) { |
---|
666 | throw new Exception("A base classifier has not been specified!"); |
---|
667 | } |
---|
668 | |
---|
669 | if (!(m_Classifier instanceof WeightedInstancesHandler) && |
---|
670 | !m_UseResampling) { |
---|
671 | m_UseResampling = true; |
---|
672 | } |
---|
673 | |
---|
674 | // can classifier handle the data? |
---|
675 | getCapabilities().testWithFail(data); |
---|
676 | |
---|
677 | if (m_Debug) { |
---|
678 | System.err.println("Creating copy of the training data"); |
---|
679 | } |
---|
680 | |
---|
681 | // remove instances with missing class |
---|
682 | data = new Instances(data); |
---|
683 | data.deleteWithMissingClass(); |
---|
684 | |
---|
685 | // only class? -> build ZeroR model |
---|
686 | if (data.numAttributes() == 1) { |
---|
687 | System.err.println( |
---|
688 | "Cannot build model (only class attribute present in data!), " |
---|
689 | + "using ZeroR model instead!"); |
---|
690 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
691 | m_ZeroR.buildClassifier(data); |
---|
692 | return; |
---|
693 | } |
---|
694 | else { |
---|
695 | m_ZeroR = null; |
---|
696 | } |
---|
697 | |
---|
698 | m_NumClasses = data.numClasses(); |
---|
699 | m_ClassAttribute = data.classAttribute(); |
---|
700 | |
---|
701 | // Create the base classifiers |
---|
702 | if (m_Debug) { |
---|
703 | System.err.println("Creating base classifiers"); |
---|
704 | } |
---|
705 | m_Classifiers = new Classifier [m_NumClasses][]; |
---|
706 | for (int j = 0; j < m_NumClasses; j++) { |
---|
707 | m_Classifiers[j] = AbstractClassifier.makeCopies(m_Classifier, |
---|
708 | getNumIterations()); |
---|
709 | } |
---|
710 | |
---|
711 | // Do we want to select the appropriate number of iterations |
---|
712 | // using cross-validation? |
---|
713 | int bestNumIterations = getNumIterations(); |
---|
714 | if (m_NumFolds > 1) { |
---|
715 | if (m_Debug) { |
---|
716 | System.err.println("Processing first fold."); |
---|
717 | } |
---|
718 | |
---|
719 | // Array for storing the results |
---|
720 | double[] results = new double[getNumIterations()]; |
---|
721 | |
---|
722 | // Iterate throught the cv-runs |
---|
723 | for (int r = 0; r < m_NumRuns; r++) { |
---|
724 | |
---|
725 | // Stratify the data |
---|
726 | data.randomize(m_RandomInstance); |
---|
727 | data.stratify(m_NumFolds); |
---|
728 | |
---|
729 | // Perform the cross-validation |
---|
730 | for (int i = 0; i < m_NumFolds; i++) { |
---|
731 | |
---|
732 | // Get train and test folds |
---|
733 | Instances train = data.trainCV(m_NumFolds, i, m_RandomInstance); |
---|
734 | Instances test = data.testCV(m_NumFolds, i); |
---|
735 | |
---|
736 | // Make class numeric |
---|
737 | Instances trainN = new Instances(train); |
---|
738 | trainN.setClassIndex(-1); |
---|
739 | trainN.deleteAttributeAt(classIndex); |
---|
740 | trainN.insertAttributeAt(new Attribute("'pseudo class'"), classIndex); |
---|
741 | trainN.setClassIndex(classIndex); |
---|
742 | m_NumericClassData = new Instances(trainN, 0); |
---|
743 | |
---|
744 | // Get class values |
---|
745 | int numInstances = train.numInstances(); |
---|
746 | double [][] trainFs = new double [numInstances][m_NumClasses]; |
---|
747 | double [][] trainYs = new double [numInstances][m_NumClasses]; |
---|
748 | for (int j = 0; j < m_NumClasses; j++) { |
---|
749 | for (int k = 0; k < numInstances; k++) { |
---|
750 | trainYs[k][j] = (train.instance(k).classValue() == j) ? |
---|
751 | 1.0 - m_Offset: 0.0 + (m_Offset / (double)m_NumClasses); |
---|
752 | } |
---|
753 | } |
---|
754 | |
---|
755 | // Perform iterations |
---|
756 | double[][] probs = initialProbs(numInstances); |
---|
757 | m_NumGenerated = 0; |
---|
758 | double sumOfWeights = train.sumOfWeights(); |
---|
759 | for (int j = 0; j < getNumIterations(); j++) { |
---|
760 | performIteration(trainYs, trainFs, probs, trainN, sumOfWeights); |
---|
761 | Evaluation eval = new Evaluation(train); |
---|
762 | eval.evaluateModel(this, test); |
---|
763 | results[j] += eval.correct(); |
---|
764 | } |
---|
765 | } |
---|
766 | } |
---|
767 | |
---|
768 | // Find the number of iterations with the lowest error |
---|
769 | double bestResult = -Double.MAX_VALUE; |
---|
770 | for (int j = 0; j < getNumIterations(); j++) { |
---|
771 | if (results[j] > bestResult) { |
---|
772 | bestResult = results[j]; |
---|
773 | bestNumIterations = j; |
---|
774 | } |
---|
775 | } |
---|
776 | if (m_Debug) { |
---|
777 | System.err.println("Best result for " + |
---|
778 | bestNumIterations + " iterations: " + |
---|
779 | bestResult); |
---|
780 | } |
---|
781 | } |
---|
782 | |
---|
783 | // Build classifier on all the data |
---|
784 | int numInstances = data.numInstances(); |
---|
785 | double [][] trainFs = new double [numInstances][m_NumClasses]; |
---|
786 | double [][] trainYs = new double [numInstances][m_NumClasses]; |
---|
787 | for (int j = 0; j < m_NumClasses; j++) { |
---|
788 | for (int i = 0, k = 0; i < numInstances; i++, k++) { |
---|
789 | trainYs[i][j] = (data.instance(k).classValue() == j) ? |
---|
790 | 1.0 - m_Offset: 0.0 + (m_Offset / (double)m_NumClasses); |
---|
791 | } |
---|
792 | } |
---|
793 | |
---|
794 | // Make class numeric |
---|
795 | data.setClassIndex(-1); |
---|
796 | data.deleteAttributeAt(classIndex); |
---|
797 | data.insertAttributeAt(new Attribute("'pseudo class'"), classIndex); |
---|
798 | data.setClassIndex(classIndex); |
---|
799 | m_NumericClassData = new Instances(data, 0); |
---|
800 | |
---|
801 | // Perform iterations |
---|
802 | double[][] probs = initialProbs(numInstances); |
---|
803 | double logLikelihood = logLikelihood(trainYs, probs); |
---|
804 | m_NumGenerated = 0; |
---|
805 | if (m_Debug) { |
---|
806 | System.err.println("Avg. log-likelihood: " + logLikelihood); |
---|
807 | } |
---|
808 | double sumOfWeights = data.sumOfWeights(); |
---|
809 | for (int j = 0; j < bestNumIterations; j++) { |
---|
810 | double previousLoglikelihood = logLikelihood; |
---|
811 | performIteration(trainYs, trainFs, probs, data, sumOfWeights); |
---|
812 | logLikelihood = logLikelihood(trainYs, probs); |
---|
813 | if (m_Debug) { |
---|
814 | System.err.println("Avg. log-likelihood: " + logLikelihood); |
---|
815 | } |
---|
816 | if (Math.abs(previousLoglikelihood - logLikelihood) < m_Precision) { |
---|
817 | return; |
---|
818 | } |
---|
819 | } |
---|
820 | } |
---|
821 | |
---|
822 | /** |
---|
823 | * Gets the intial class probabilities. |
---|
824 | * |
---|
825 | * @param numInstances the number of instances |
---|
826 | * @return the initial class probabilities |
---|
827 | */ |
---|
828 | private double[][] initialProbs(int numInstances) { |
---|
829 | |
---|
830 | double[][] probs = new double[numInstances][m_NumClasses]; |
---|
831 | for (int i = 0; i < numInstances; i++) { |
---|
832 | for (int j = 0 ; j < m_NumClasses; j++) { |
---|
833 | probs[i][j] = 1.0 / m_NumClasses; |
---|
834 | } |
---|
835 | } |
---|
836 | return probs; |
---|
837 | } |
---|
838 | |
---|
839 | /** |
---|
840 | * Computes loglikelihood given class values |
---|
841 | * and estimated probablities. |
---|
842 | * |
---|
843 | * @param trainYs class values |
---|
844 | * @param probs estimated probabilities |
---|
845 | * @return the computed loglikelihood |
---|
846 | */ |
---|
847 | private double logLikelihood(double[][] trainYs, double[][] probs) { |
---|
848 | |
---|
849 | double logLikelihood = 0; |
---|
850 | for (int i = 0; i < trainYs.length; i++) { |
---|
851 | for (int j = 0; j < m_NumClasses; j++) { |
---|
852 | if (trainYs[i][j] == 1.0 - m_Offset) { |
---|
853 | logLikelihood -= Math.log(probs[i][j]); |
---|
854 | } |
---|
855 | } |
---|
856 | } |
---|
857 | return logLikelihood / (double)trainYs.length; |
---|
858 | } |
---|
859 | |
---|
860 | /** |
---|
861 | * Performs one boosting iteration. |
---|
862 | * |
---|
863 | * @param trainYs class values |
---|
864 | * @param trainFs F scores |
---|
865 | * @param probs probabilities |
---|
866 | * @param data the data to run the iteration on |
---|
867 | * @param origSumOfWeights the original sum of weights |
---|
868 | * @throws Exception in case base classifiers run into problems |
---|
869 | */ |
---|
870 | private void performIteration(double[][] trainYs, |
---|
871 | double[][] trainFs, |
---|
872 | double[][] probs, |
---|
873 | Instances data, |
---|
874 | double origSumOfWeights) throws Exception { |
---|
875 | |
---|
876 | if (m_Debug) { |
---|
877 | System.err.println("Training classifier " + (m_NumGenerated + 1)); |
---|
878 | } |
---|
879 | |
---|
880 | // Build the new models |
---|
881 | for (int j = 0; j < m_NumClasses; j++) { |
---|
882 | if (m_Debug) { |
---|
883 | System.err.println("\t...for class " + (j + 1) |
---|
884 | + " (" + m_ClassAttribute.name() |
---|
885 | + "=" + m_ClassAttribute.value(j) + ")"); |
---|
886 | } |
---|
887 | |
---|
888 | // Make copy because we want to save the weights |
---|
889 | Instances boostData = new Instances(data); |
---|
890 | |
---|
891 | // Set instance pseudoclass and weights |
---|
892 | for (int i = 0; i < probs.length; i++) { |
---|
893 | |
---|
894 | // Compute response and weight |
---|
895 | double p = probs[i][j]; |
---|
896 | double z, actual = trainYs[i][j]; |
---|
897 | if (actual == 1 - m_Offset) { |
---|
898 | z = 1.0 / p; |
---|
899 | if (z > Z_MAX) { // threshold |
---|
900 | z = Z_MAX; |
---|
901 | } |
---|
902 | } else { |
---|
903 | z = -1.0 / (1.0 - p); |
---|
904 | if (z < -Z_MAX) { // threshold |
---|
905 | z = -Z_MAX; |
---|
906 | } |
---|
907 | } |
---|
908 | double w = (actual - p) / z; |
---|
909 | |
---|
910 | // Set values for instance |
---|
911 | Instance current = boostData.instance(i); |
---|
912 | current.setValue(boostData.classIndex(), z); |
---|
913 | current.setWeight(current.weight() * w); |
---|
914 | } |
---|
915 | |
---|
916 | // Scale the weights (helps with some base learners) |
---|
917 | double sumOfWeights = boostData.sumOfWeights(); |
---|
918 | double scalingFactor = (double)origSumOfWeights / sumOfWeights; |
---|
919 | for (int i = 0; i < probs.length; i++) { |
---|
920 | Instance current = boostData.instance(i); |
---|
921 | current.setWeight(current.weight() * scalingFactor); |
---|
922 | } |
---|
923 | |
---|
924 | // Select instances to train the classifier on |
---|
925 | Instances trainData = boostData; |
---|
926 | if (m_WeightThreshold < 100) { |
---|
927 | trainData = selectWeightQuantile(boostData, |
---|
928 | (double)m_WeightThreshold / 100); |
---|
929 | } else { |
---|
930 | if (m_UseResampling) { |
---|
931 | double[] weights = new double[boostData.numInstances()]; |
---|
932 | for (int kk = 0; kk < weights.length; kk++) { |
---|
933 | weights[kk] = boostData.instance(kk).weight(); |
---|
934 | } |
---|
935 | trainData = boostData.resampleWithWeights(m_RandomInstance, |
---|
936 | weights); |
---|
937 | } |
---|
938 | } |
---|
939 | |
---|
940 | // Build the classifier |
---|
941 | m_Classifiers[j][m_NumGenerated].buildClassifier(trainData); |
---|
942 | } |
---|
943 | |
---|
944 | // Evaluate / increment trainFs from the classifier |
---|
945 | for (int i = 0; i < trainFs.length; i++) { |
---|
946 | double [] pred = new double [m_NumClasses]; |
---|
947 | double predSum = 0; |
---|
948 | for (int j = 0; j < m_NumClasses; j++) { |
---|
949 | pred[j] = m_Shrinkage * m_Classifiers[j][m_NumGenerated] |
---|
950 | .classifyInstance(data.instance(i)); |
---|
951 | predSum += pred[j]; |
---|
952 | } |
---|
953 | predSum /= m_NumClasses; |
---|
954 | for (int j = 0; j < m_NumClasses; j++) { |
---|
955 | trainFs[i][j] += (pred[j] - predSum) * (m_NumClasses - 1) |
---|
956 | / m_NumClasses; |
---|
957 | } |
---|
958 | } |
---|
959 | m_NumGenerated++; |
---|
960 | |
---|
961 | // Compute the current probability estimates |
---|
962 | for (int i = 0; i < trainYs.length; i++) { |
---|
963 | probs[i] = probs(trainFs[i]); |
---|
964 | } |
---|
965 | } |
---|
966 | |
---|
967 | /** |
---|
968 | * Returns the array of classifiers that have been built. |
---|
969 | * |
---|
970 | * @return the built classifiers |
---|
971 | */ |
---|
972 | public Classifier[][] classifiers() { |
---|
973 | |
---|
974 | Classifier[][] classifiers = |
---|
975 | new Classifier[m_NumClasses][m_NumGenerated]; |
---|
976 | for (int j = 0; j < m_NumClasses; j++) { |
---|
977 | for (int i = 0; i < m_NumGenerated; i++) { |
---|
978 | classifiers[j][i] = m_Classifiers[j][i]; |
---|
979 | } |
---|
980 | } |
---|
981 | return classifiers; |
---|
982 | } |
---|
983 | |
---|
984 | /** |
---|
985 | * Computes probabilities from F scores |
---|
986 | * |
---|
987 | * @param Fs the F scores |
---|
988 | * @return the computed probabilities |
---|
989 | */ |
---|
990 | private double[] probs(double[] Fs) { |
---|
991 | |
---|
992 | double maxF = -Double.MAX_VALUE; |
---|
993 | for (int i = 0; i < Fs.length; i++) { |
---|
994 | if (Fs[i] > maxF) { |
---|
995 | maxF = Fs[i]; |
---|
996 | } |
---|
997 | } |
---|
998 | double sum = 0; |
---|
999 | double[] probs = new double[Fs.length]; |
---|
1000 | for (int i = 0; i < Fs.length; i++) { |
---|
1001 | probs[i] = Math.exp(Fs[i] - maxF); |
---|
1002 | sum += probs[i]; |
---|
1003 | } |
---|
1004 | Utils.normalize(probs, sum); |
---|
1005 | return probs; |
---|
1006 | } |
---|
1007 | |
---|
1008 | /** |
---|
1009 | * Calculates the class membership probabilities for the given test instance. |
---|
1010 | * |
---|
1011 | * @param instance the instance to be classified |
---|
1012 | * @return predicted class probability distribution |
---|
1013 | * @throws Exception if instance could not be classified |
---|
1014 | * successfully |
---|
1015 | */ |
---|
1016 | public double [] distributionForInstance(Instance instance) |
---|
1017 | throws Exception { |
---|
1018 | |
---|
1019 | // default model? |
---|
1020 | if (m_ZeroR != null) { |
---|
1021 | return m_ZeroR.distributionForInstance(instance); |
---|
1022 | } |
---|
1023 | |
---|
1024 | instance = (Instance)instance.copy(); |
---|
1025 | instance.setDataset(m_NumericClassData); |
---|
1026 | double [] pred = new double [m_NumClasses]; |
---|
1027 | double [] Fs = new double [m_NumClasses]; |
---|
1028 | for (int i = 0; i < m_NumGenerated; i++) { |
---|
1029 | double predSum = 0; |
---|
1030 | for (int j = 0; j < m_NumClasses; j++) { |
---|
1031 | pred[j] = m_Shrinkage * m_Classifiers[j][i].classifyInstance(instance); |
---|
1032 | predSum += pred[j]; |
---|
1033 | } |
---|
1034 | predSum /= m_NumClasses; |
---|
1035 | for (int j = 0; j < m_NumClasses; j++) { |
---|
1036 | Fs[j] += (pred[j] - predSum) * (m_NumClasses - 1) |
---|
1037 | / m_NumClasses; |
---|
1038 | } |
---|
1039 | } |
---|
1040 | |
---|
1041 | return probs(Fs); |
---|
1042 | } |
---|
1043 | |
---|
1044 | /** |
---|
1045 | * Returns the boosted model as Java source code. |
---|
1046 | * |
---|
1047 | * @param className the classname in the generated code |
---|
1048 | * @return the tree as Java source code |
---|
1049 | * @throws Exception if something goes wrong |
---|
1050 | */ |
---|
1051 | public String toSource(String className) throws Exception { |
---|
1052 | |
---|
1053 | if (m_NumGenerated == 0) { |
---|
1054 | throw new Exception("No model built yet"); |
---|
1055 | } |
---|
1056 | if (!(m_Classifiers[0][0] instanceof Sourcable)) { |
---|
1057 | throw new Exception("Base learner " + m_Classifier.getClass().getName() |
---|
1058 | + " is not Sourcable"); |
---|
1059 | } |
---|
1060 | |
---|
1061 | StringBuffer text = new StringBuffer("class "); |
---|
1062 | text.append(className).append(" {\n\n"); |
---|
1063 | text.append(" private static double RtoP(double []R, int j) {\n"+ |
---|
1064 | " double Rcenter = 0;\n"+ |
---|
1065 | " for (int i = 0; i < R.length; i++) {\n"+ |
---|
1066 | " Rcenter += R[i];\n"+ |
---|
1067 | " }\n"+ |
---|
1068 | " Rcenter /= R.length;\n"+ |
---|
1069 | " double Rsum = 0;\n"+ |
---|
1070 | " for (int i = 0; i < R.length; i++) {\n"+ |
---|
1071 | " Rsum += Math.exp(R[i] - Rcenter);\n"+ |
---|
1072 | " }\n"+ |
---|
1073 | " return Math.exp(R[j]) / Rsum;\n"+ |
---|
1074 | " }\n\n"); |
---|
1075 | |
---|
1076 | text.append(" public static double classify(Object[] i) {\n" + |
---|
1077 | " double [] d = distribution(i);\n" + |
---|
1078 | " double maxV = d[0];\n" + |
---|
1079 | " int maxI = 0;\n"+ |
---|
1080 | " for (int j = 1; j < " + m_NumClasses + "; j++) {\n"+ |
---|
1081 | " if (d[j] > maxV) { maxV = d[j]; maxI = j; }\n"+ |
---|
1082 | " }\n return (double) maxI;\n }\n\n"); |
---|
1083 | |
---|
1084 | text.append(" public static double [] distribution(Object [] i) {\n"); |
---|
1085 | text.append(" double [] Fs = new double [" + m_NumClasses + "];\n"); |
---|
1086 | text.append(" double [] Fi = new double [" + m_NumClasses + "];\n"); |
---|
1087 | text.append(" double Fsum;\n"); |
---|
1088 | for (int i = 0; i < m_NumGenerated; i++) { |
---|
1089 | text.append(" Fsum = 0;\n"); |
---|
1090 | for (int j = 0; j < m_NumClasses; j++) { |
---|
1091 | text.append(" Fi[" + j + "] = " + className + '_' +j + '_' + i |
---|
1092 | + ".classify(i); Fsum += Fi[" + j + "];\n"); |
---|
1093 | } |
---|
1094 | text.append(" Fsum /= " + m_NumClasses + ";\n"); |
---|
1095 | text.append(" for (int j = 0; j < " + m_NumClasses + "; j++) {"); |
---|
1096 | text.append(" Fs[j] += (Fi[j] - Fsum) * " |
---|
1097 | + (m_NumClasses - 1) + " / " + m_NumClasses + "; }\n"); |
---|
1098 | } |
---|
1099 | |
---|
1100 | text.append(" double [] dist = new double [" + m_NumClasses + "];\n" + |
---|
1101 | " for (int j = 0; j < " + m_NumClasses + "; j++) {\n"+ |
---|
1102 | " dist[j] = RtoP(Fs, j);\n"+ |
---|
1103 | " }\n return dist;\n"); |
---|
1104 | text.append(" }\n}\n"); |
---|
1105 | |
---|
1106 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
1107 | for (int j = 0; j < m_Classifiers[i].length; j++) { |
---|
1108 | text.append(((Sourcable)m_Classifiers[i][j]) |
---|
1109 | .toSource(className + '_' + i + '_' + j)); |
---|
1110 | } |
---|
1111 | } |
---|
1112 | return text.toString(); |
---|
1113 | } |
---|
1114 | |
---|
1115 | /** |
---|
1116 | * Returns description of the boosted classifier. |
---|
1117 | * |
---|
1118 | * @return description of the boosted classifier as a string |
---|
1119 | */ |
---|
1120 | public String toString() { |
---|
1121 | |
---|
1122 | // only ZeroR model? |
---|
1123 | if (m_ZeroR != null) { |
---|
1124 | StringBuffer buf = new StringBuffer(); |
---|
1125 | buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
1126 | buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
1127 | buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
1128 | buf.append(m_ZeroR.toString()); |
---|
1129 | return buf.toString(); |
---|
1130 | } |
---|
1131 | |
---|
1132 | StringBuffer text = new StringBuffer(); |
---|
1133 | |
---|
1134 | if (m_NumGenerated == 0) { |
---|
1135 | text.append("LogitBoost: No model built yet."); |
---|
1136 | // text.append(m_Classifiers[0].toString()+"\n"); |
---|
1137 | } else { |
---|
1138 | text.append("LogitBoost: Base classifiers and their weights: \n"); |
---|
1139 | for (int i = 0; i < m_NumGenerated; i++) { |
---|
1140 | text.append("\nIteration "+(i+1)); |
---|
1141 | for (int j = 0; j < m_NumClasses; j++) { |
---|
1142 | text.append("\n\tClass " + (j + 1) |
---|
1143 | + " (" + m_ClassAttribute.name() |
---|
1144 | + "=" + m_ClassAttribute.value(j) + ")\n\n" |
---|
1145 | + m_Classifiers[j][i].toString() + "\n"); |
---|
1146 | } |
---|
1147 | } |
---|
1148 | text.append("Number of performed iterations: " + |
---|
1149 | m_NumGenerated + "\n"); |
---|
1150 | } |
---|
1151 | |
---|
1152 | return text.toString(); |
---|
1153 | } |
---|
1154 | |
---|
1155 | /** |
---|
1156 | * Returns the revision string. |
---|
1157 | * |
---|
1158 | * @return the revision |
---|
1159 | */ |
---|
1160 | public String getRevision() { |
---|
1161 | return RevisionUtils.extract("$Revision: 6091 $"); |
---|
1162 | } |
---|
1163 | |
---|
1164 | /** |
---|
1165 | * Main method for testing this class. |
---|
1166 | * |
---|
1167 | * @param argv the options |
---|
1168 | */ |
---|
1169 | public static void main(String [] argv) { |
---|
1170 | runClassifier(new LogitBoost(), argv); |
---|
1171 | } |
---|
1172 | } |
---|