source: src/main/java/weka/classifiers/meta/Grading.java @ 27

Last change on this file since 27 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 11.7 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    Grading.java
19 *    Copyright (C) 2000 University of Waikato
20 *
21 */
22
23package weka.classifiers.meta;
24
25import weka.classifiers.Classifier;
26import weka.classifiers.AbstractClassifier;
27import weka.core.Attribute;
28import weka.core.FastVector;
29import weka.core.Instance;
30import weka.core.DenseInstance;
31import weka.core.Instances;
32import weka.core.RevisionUtils;
33import weka.core.TechnicalInformation;
34import weka.core.TechnicalInformationHandler;
35import weka.core.Utils;
36import weka.core.TechnicalInformation.Field;
37import weka.core.TechnicalInformation.Type;
38
39import java.util.Random;
40
41/**
42 <!-- globalinfo-start -->
43 * Implements Grading. The base classifiers are "graded".<br/>
44 * <br/>
45 * For more information, see<br/>
46 * <br/>
47 * A.K. Seewald, J. Fuernkranz: An Evaluation of Grading Classifiers. In: Advances in Intelligent Data Analysis: 4th International Conference, Berlin/Heidelberg/New York/Tokyo, 115-124, 2001.
48 * <p/>
49 <!-- globalinfo-end -->
50 *
51 <!-- technical-bibtex-start -->
52 * BibTeX:
53 * <pre>
54 * &#64;inproceedings{Seewald2001,
55 *    address = {Berlin/Heidelberg/New York/Tokyo},
56 *    author = {A.K. Seewald and J. Fuernkranz},
57 *    booktitle = {Advances in Intelligent Data Analysis: 4th International Conference},
58 *    editor = {F. Hoffmann et al.},
59 *    pages = {115-124},
60 *    publisher = {Springer},
61 *    title = {An Evaluation of Grading Classifiers},
62 *    year = {2001}
63 * }
64 * </pre>
65 * <p/>
66 <!-- technical-bibtex-end -->
67 *
68 <!-- options-start -->
69 * Valid options are: <p/>
70 *
71 * <pre> -M &lt;scheme specification&gt;
72 *  Full name of meta classifier, followed by options.
73 *  (default: "weka.classifiers.rules.Zero")</pre>
74 *
75 * <pre> -X &lt;number of folds&gt;
76 *  Sets the number of cross-validation folds.</pre>
77 *
78 * <pre> -S &lt;num&gt;
79 *  Random number seed.
80 *  (default 1)</pre>
81 *
82 * <pre> -B &lt;classifier specification&gt;
83 *  Full class name of classifier to include, followed
84 *  by scheme options. May be specified multiple times.
85 *  (default: "weka.classifiers.rules.ZeroR")</pre>
86 *
87 * <pre> -D
88 *  If set, classifier is run in debug mode and
89 *  may output additional info to the console</pre>
90 *
91 <!-- options-end -->
92 *
93 * @author Alexander K. Seewald (alex@seewald.at)
94 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
95 * @version $Revision: 5987 $
96 */
97public class Grading 
98  extends Stacking
99  implements TechnicalInformationHandler {
100
101  /** for serialization */
102  static final long serialVersionUID = 5207837947890081170L;
103 
104  /** The meta classifiers, one for each base classifier. */
105  protected Classifier [] m_MetaClassifiers = new Classifier[0];
106
107  /** InstPerClass */
108  protected double [] m_InstPerClass = null;
109   
110  /**
111   * Returns a string describing classifier
112   * @return a description suitable for
113   * displaying in the explorer/experimenter gui
114   */
115  public String globalInfo() {
116
117    return 
118        "Implements Grading. The base classifiers are \"graded\".\n\n"
119      + "For more information, see\n\n"
120      + getTechnicalInformation().toString();
121  }
122
123  /**
124   * Returns an instance of a TechnicalInformation object, containing
125   * detailed information about the technical background of this class,
126   * e.g., paper reference or book this class is based on.
127   *
128   * @return the technical information about this class
129   */
130  public TechnicalInformation getTechnicalInformation() {
131    TechnicalInformation        result;
132   
133    result = new TechnicalInformation(Type.INPROCEEDINGS);
134    result.setValue(Field.AUTHOR, "A.K. Seewald and J. Fuernkranz");
135    result.setValue(Field.TITLE, "An Evaluation of Grading Classifiers");
136    result.setValue(Field.BOOKTITLE, "Advances in Intelligent Data Analysis: 4th International Conference");
137    result.setValue(Field.EDITOR, "F. Hoffmann et al.");
138    result.setValue(Field.YEAR, "2001");
139    result.setValue(Field.PAGES, "115-124");
140    result.setValue(Field.PUBLISHER, "Springer");
141    result.setValue(Field.ADDRESS, "Berlin/Heidelberg/New York/Tokyo");
142   
143    return result;
144  }
145
146  /**
147   * Generates the meta data
148   *
149   * @param newData the data to work on
150   * @param random the random number generator used in the generation
151   * @throws Exception if generation fails
152   */
153  protected void generateMetaLevel(Instances newData, Random random) 
154    throws Exception {
155
156    m_MetaFormat = metaFormat(newData);
157    Instances [] metaData = new Instances[m_Classifiers.length];
158    for (int i = 0; i < m_Classifiers.length; i++) {
159      metaData[i] = metaFormat(newData);
160    }
161    for (int j = 0; j < m_NumFolds; j++) {
162
163      Instances train = newData.trainCV(m_NumFolds, j, random);
164      Instances test = newData.testCV(m_NumFolds, j);
165
166      // Build base classifiers
167      for (int i = 0; i < m_Classifiers.length; i++) {
168        getClassifier(i).buildClassifier(train);
169        for (int k = 0; k < test.numInstances(); k++) {
170          metaData[i].add(metaInstance(test.instance(k),i));
171        }
172      }
173    }
174       
175    // calculate InstPerClass
176    m_InstPerClass = new double[newData.numClasses()];
177    for (int i=0; i < newData.numClasses(); i++) m_InstPerClass[i]=0.0;
178    for (int i=0; i < newData.numInstances(); i++) {
179      m_InstPerClass[(int)newData.instance(i).classValue()]++;
180    }
181   
182    m_MetaClassifiers = AbstractClassifier.makeCopies(m_MetaClassifier,
183                                              m_Classifiers.length);
184
185    for (int i = 0; i < m_Classifiers.length; i++) {
186      m_MetaClassifiers[i].buildClassifier(metaData[i]);
187    }
188  }
189
190  /**
191   * Returns class probabilities for a given instance using the stacked classifier.
192   * One class will always get all the probability mass (i.e. probability one).
193   *
194   * @param instance the instance to be classified
195   * @throws Exception if instance could not be classified
196   * successfully
197   * @return the class distribution for the given instance
198   */
199  public double[] distributionForInstance(Instance instance) throws Exception {
200
201    double maxPreds;
202    int numPreds=0;
203    int numClassifiers=m_Classifiers.length;
204    int idxPreds;
205    double [] predConfs = new double[numClassifiers];
206    double [] preds;
207
208    for (int i=0; i<numClassifiers; i++) {
209      preds = m_MetaClassifiers[i].distributionForInstance(metaInstance(instance,i));
210      if (m_MetaClassifiers[i].classifyInstance(metaInstance(instance,i))==1)
211        predConfs[i]=preds[1];
212      else
213        predConfs[i]=-preds[0];
214    }
215    if (predConfs[Utils.maxIndex(predConfs)]<0.0) { // no correct classifiers
216      for (int i=0; i<numClassifiers; i++)   // use neg. confidences instead
217        predConfs[i]=1.0+predConfs[i];
218    } else {
219      for (int i=0; i<numClassifiers; i++)   // otherwise ignore neg. conf
220        if (predConfs[i]<0) predConfs[i]=0.0;
221    }
222
223    /*System.out.print(preds[0]);
224    System.out.print(":");
225    System.out.print(preds[1]);
226    System.out.println("#");*/
227
228    preds=new double[instance.numClasses()];
229    for (int i=0; i<instance.numClasses(); i++) preds[i]=0.0;
230    for (int i=0; i<numClassifiers; i++) {
231      idxPreds=(int)(m_Classifiers[i].classifyInstance(instance));
232      preds[idxPreds]+=predConfs[i];
233    }
234
235    maxPreds=preds[Utils.maxIndex(preds)];
236    int MaxInstPerClass=-100;
237    int MaxClass=-1;
238    for (int i=0; i<instance.numClasses(); i++) {
239      if (preds[i]==maxPreds) {
240        numPreds++;
241        if (m_InstPerClass[i]>MaxInstPerClass) {
242          MaxInstPerClass=(int)m_InstPerClass[i];
243          MaxClass=i;
244        }
245      }
246    }
247
248    int predictedIndex;
249    if (numPreds==1)
250      predictedIndex = Utils.maxIndex(preds);
251    else
252    {
253      // System.out.print("?");
254      // System.out.print(instance.toString());
255      // for (int i=0; i<instance.numClasses(); i++) {
256      //   System.out.print("/");
257      //   System.out.print(preds[i]);
258      // }
259      // System.out.println(MaxClass);
260      predictedIndex = MaxClass;
261    }
262    double[] classProbs = new double[instance.numClasses()];
263    classProbs[predictedIndex] = 1.0;
264    return classProbs;
265  }
266
267  /**
268   * Output a representation of this classifier
269   *
270   * @return a string representation of the classifier
271   */
272  public String toString() {
273
274    if (m_Classifiers.length == 0) {
275      return "Grading: No base schemes entered.";
276    }
277    if (m_MetaClassifiers.length == 0) {
278      return "Grading: No meta scheme selected.";
279    }
280    if (m_MetaFormat == null) {
281      return "Grading: No model built yet.";
282    }
283    String result = "Grading\n\nBase classifiers\n\n";
284    for (int i = 0; i < m_Classifiers.length; i++) {
285      result += getClassifier(i).toString() +"\n\n";
286    }
287   
288    result += "\n\nMeta classifiers\n\n";
289    for (int i = 0; i < m_Classifiers.length; i++) {
290      result += m_MetaClassifiers[i].toString() +"\n\n";
291    }
292
293    return result;
294  }
295
296  /**
297   * Makes the format for the level-1 data.
298   *
299   * @param instances the level-0 format
300   * @return the format for the meta data
301   * @throws Exception if an error occurs
302   */
303  protected Instances metaFormat(Instances instances) throws Exception {
304
305    FastVector attributes = new FastVector();
306    Instances metaFormat;
307   
308    for (int i = 0; i<instances.numAttributes(); i++) {
309        if ( i != instances.classIndex() ) {
310            attributes.addElement(instances.attribute(i));
311        }
312    }
313
314    FastVector nomElements = new FastVector(2);
315    nomElements.addElement("0");
316    nomElements.addElement("1");
317    attributes.addElement(new Attribute("PredConf",nomElements));
318
319    metaFormat = new Instances("Meta format", attributes, 0);
320    metaFormat.setClassIndex(metaFormat.numAttributes()-1);
321    return metaFormat;
322  }
323
324  /**
325   * Makes a level-1 instance from the given instance.
326   *
327   * @param instance the instance to be transformed
328   * @param k index of the classifier
329   * @return the level-1 instance
330   * @throws Exception if an error occurs
331   */
332  protected Instance metaInstance(Instance instance, int k) throws Exception {
333
334    double[] values = new double[m_MetaFormat.numAttributes()];
335    Instance metaInstance;
336    double predConf;
337    int i;
338    int maxIdx;
339    double maxVal;
340
341    int idx = 0;
342    for (i = 0; i < instance.numAttributes(); i++) {
343        if (i != instance.classIndex()) {
344            values[idx] = instance.value(i);
345            idx++;
346        }
347    }
348
349    Classifier classifier = getClassifier(k);
350
351    if (m_BaseFormat.classAttribute().isNumeric()) {
352      throw new Exception("Class Attribute must not be numeric!");
353    } else {
354      double[] dist = classifier.distributionForInstance(instance);
355     
356      maxIdx=0;
357      maxVal=dist[0];
358      for (int j = 1; j < dist.length; j++) {
359        if (dist[j]>maxVal) {
360          maxVal=dist[j];
361          maxIdx=j;
362        }
363      }
364      predConf= (instance.classValue()==maxIdx) ? 1:0;
365    }
366   
367    values[idx]=predConf;
368    metaInstance = new DenseInstance(1, values);
369    metaInstance.setDataset(m_MetaFormat);
370    return metaInstance;
371  }
372 
373  /**
374   * Returns the revision string.
375   *
376   * @return            the revision
377   */
378  public String getRevision() {
379    return RevisionUtils.extract("$Revision: 5987 $");
380  }
381
382  /**
383   * Main method for testing this class.
384   *
385   * @param argv should contain the following arguments:
386   * -t training file [-T test file] [-c class index]
387   */
388  public static void main(String [] argv) {
389    runClassifier(new Grading(), argv);
390  }
391}
392
Note: See TracBrowser for help on using the repository browser.