/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Grading.java
* Copyright (C) 2000 University of Waikato
*
*/
package weka.classifiers.meta;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.DenseInstance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import java.util.Random;
/**
* Implements Grading. The base classifiers are "graded".
*
* For more information, see
*
* A.K. Seewald, J. Fuernkranz: An Evaluation of Grading Classifiers. In: Advances in Intelligent Data Analysis: 4th International Conference, Berlin/Heidelberg/New York/Tokyo, 115-124, 2001.
*
* @inproceedings{Seewald2001, * address = {Berlin/Heidelberg/New York/Tokyo}, * author = {A.K. Seewald and J. Fuernkranz}, * booktitle = {Advances in Intelligent Data Analysis: 4th International Conference}, * editor = {F. Hoffmann et al.}, * pages = {115-124}, * publisher = {Springer}, * title = {An Evaluation of Grading Classifiers}, * year = {2001} * } ** * * Valid options are: * *
-M <scheme specification> * Full name of meta classifier, followed by options. * (default: "weka.classifiers.rules.Zero")* *
-X <number of folds> * Sets the number of cross-validation folds.* *
-S <num> * Random number seed. * (default 1)* *
-B <classifier specification> * Full class name of classifier to include, followed * by scheme options. May be specified multiple times. * (default: "weka.classifiers.rules.ZeroR")* *
-D * If set, classifier is run in debug mode and * may output additional info to the console* * * @author Alexander K. Seewald (alex@seewald.at) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 5987 $ */ public class Grading extends Stacking implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5207837947890081170L; /** The meta classifiers, one for each base classifier. */ protected Classifier [] m_MetaClassifiers = new Classifier[0]; /** InstPerClass */ protected double [] m_InstPerClass = null; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implements Grading. The base classifiers are \"graded\".\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "A.K. Seewald and J. Fuernkranz"); result.setValue(Field.TITLE, "An Evaluation of Grading Classifiers"); result.setValue(Field.BOOKTITLE, "Advances in Intelligent Data Analysis: 4th International Conference"); result.setValue(Field.EDITOR, "F. Hoffmann et al."); result.setValue(Field.YEAR, "2001"); result.setValue(Field.PAGES, "115-124"); result.setValue(Field.PUBLISHER, "Springer"); result.setValue(Field.ADDRESS, "Berlin/Heidelberg/New York/Tokyo"); return result; } /** * Generates the meta data * * @param newData the data to work on * @param random the random number generator used in the generation * @throws Exception if generation fails */ protected void generateMetaLevel(Instances newData, Random random) throws Exception { m_MetaFormat = metaFormat(newData); Instances [] metaData = new Instances[m_Classifiers.length]; for (int i = 0; i < m_Classifiers.length; i++) { metaData[i] = metaFormat(newData); } for (int j = 0; j < m_NumFolds; j++) { Instances train = newData.trainCV(m_NumFolds, j, random); Instances test = newData.testCV(m_NumFolds, j); // Build base classifiers for (int i = 0; i < m_Classifiers.length; i++) { getClassifier(i).buildClassifier(train); for (int k = 0; k < test.numInstances(); k++) { metaData[i].add(metaInstance(test.instance(k),i)); } } } // calculate InstPerClass m_InstPerClass = new double[newData.numClasses()]; for (int i=0; i < newData.numClasses(); i++) m_InstPerClass[i]=0.0; for (int i=0; i < newData.numInstances(); i++) { m_InstPerClass[(int)newData.instance(i).classValue()]++; } m_MetaClassifiers = AbstractClassifier.makeCopies(m_MetaClassifier, m_Classifiers.length); for (int i = 0; i < m_Classifiers.length; i++) { m_MetaClassifiers[i].buildClassifier(metaData[i]); } } /** * Returns class probabilities for a given instance using the stacked classifier. * One class will always get all the probability mass (i.e. probability one). * * @param instance the instance to be classified * @throws Exception if instance could not be classified * successfully * @return the class distribution for the given instance */ public double[] distributionForInstance(Instance instance) throws Exception { double maxPreds; int numPreds=0; int numClassifiers=m_Classifiers.length; int idxPreds; double [] predConfs = new double[numClassifiers]; double [] preds; for (int i=0; i