1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * END.java |
---|
19 | * Copyright (C) 2004-2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
28 | import weka.core.Capabilities; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.Randomizable; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.TechnicalInformation; |
---|
34 | import weka.core.TechnicalInformationHandler; |
---|
35 | import weka.core.Utils; |
---|
36 | import weka.core.TechnicalInformation.Field; |
---|
37 | import weka.core.TechnicalInformation.Type; |
---|
38 | |
---|
39 | import java.util.Hashtable; |
---|
40 | import java.util.Random; |
---|
41 | |
---|
42 | /** |
---|
43 | <!-- globalinfo-start --> |
---|
44 | * A meta classifier for handling multi-class datasets with 2-class classifiers by building an ensemble of nested dichotomies.<br/> |
---|
45 | * <br/> |
---|
46 | * For more info, check<br/> |
---|
47 | * <br/> |
---|
48 | * Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005.<br/> |
---|
49 | * <br/> |
---|
50 | * Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems. In: Twenty-first International Conference on Machine Learning, 2004. |
---|
51 | * <p/> |
---|
52 | <!-- globalinfo-end --> |
---|
53 | * |
---|
54 | <!-- technical-bibtex-start --> |
---|
55 | * BibTeX: |
---|
56 | * <pre> |
---|
57 | * @inproceedings{Dong2005, |
---|
58 | * author = {Lin Dong and Eibe Frank and Stefan Kramer}, |
---|
59 | * booktitle = {PKDD}, |
---|
60 | * pages = {84-95}, |
---|
61 | * publisher = {Springer}, |
---|
62 | * title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems}, |
---|
63 | * year = {2005} |
---|
64 | * } |
---|
65 | * |
---|
66 | * @inproceedings{Frank2004, |
---|
67 | * author = {Eibe Frank and Stefan Kramer}, |
---|
68 | * booktitle = {Twenty-first International Conference on Machine Learning}, |
---|
69 | * publisher = {ACM}, |
---|
70 | * title = {Ensembles of nested dichotomies for multi-class problems}, |
---|
71 | * year = {2004} |
---|
72 | * } |
---|
73 | * </pre> |
---|
74 | * <p/> |
---|
75 | <!-- technical-bibtex-end --> |
---|
76 | * |
---|
77 | <!-- options-start --> |
---|
78 | * Valid options are: <p/> |
---|
79 | * |
---|
80 | * <pre> -S <num> |
---|
81 | * Random number seed. |
---|
82 | * (default 1)</pre> |
---|
83 | * |
---|
84 | * <pre> -I <num> |
---|
85 | * Number of iterations. |
---|
86 | * (default 10)</pre> |
---|
87 | * |
---|
88 | * <pre> -D |
---|
89 | * If set, classifier is run in debug mode and |
---|
90 | * may output additional info to the console</pre> |
---|
91 | * |
---|
92 | * <pre> -W |
---|
93 | * Full name of base classifier. |
---|
94 | * (default: weka.classifiers.meta.nestedDichotomies.ND)</pre> |
---|
95 | * |
---|
96 | * <pre> |
---|
97 | * Options specific to classifier weka.classifiers.meta.nestedDichotomies.ND: |
---|
98 | * </pre> |
---|
99 | * |
---|
100 | * <pre> -S <num> |
---|
101 | * Random number seed. |
---|
102 | * (default 1)</pre> |
---|
103 | * |
---|
104 | * <pre> -D |
---|
105 | * If set, classifier is run in debug mode and |
---|
106 | * may output additional info to the console</pre> |
---|
107 | * |
---|
108 | * <pre> -W |
---|
109 | * Full name of base classifier. |
---|
110 | * (default: weka.classifiers.trees.J48)</pre> |
---|
111 | * |
---|
112 | * <pre> |
---|
113 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
114 | * </pre> |
---|
115 | * |
---|
116 | * <pre> -U |
---|
117 | * Use unpruned tree.</pre> |
---|
118 | * |
---|
119 | * <pre> -C <pruning confidence> |
---|
120 | * Set confidence threshold for pruning. |
---|
121 | * (default 0.25)</pre> |
---|
122 | * |
---|
123 | * <pre> -M <minimum number of instances> |
---|
124 | * Set minimum number of instances per leaf. |
---|
125 | * (default 2)</pre> |
---|
126 | * |
---|
127 | * <pre> -R |
---|
128 | * Use reduced error pruning.</pre> |
---|
129 | * |
---|
130 | * <pre> -N <number of folds> |
---|
131 | * Set number of folds for reduced error |
---|
132 | * pruning. One fold is used as pruning set. |
---|
133 | * (default 3)</pre> |
---|
134 | * |
---|
135 | * <pre> -B |
---|
136 | * Use binary splits only.</pre> |
---|
137 | * |
---|
138 | * <pre> -S |
---|
139 | * Don't perform subtree raising.</pre> |
---|
140 | * |
---|
141 | * <pre> -L |
---|
142 | * Do not clean up after the tree has been built.</pre> |
---|
143 | * |
---|
144 | * <pre> -A |
---|
145 | * Laplace smoothing for predicted probabilities.</pre> |
---|
146 | * |
---|
147 | * <pre> -Q <seed> |
---|
148 | * Seed for random data shuffling (default 1).</pre> |
---|
149 | * |
---|
150 | <!-- options-end --> |
---|
151 | * |
---|
152 | * Options after -- are passed to the designated classifier.<p> |
---|
153 | * |
---|
154 | * @author Eibe Frank |
---|
155 | * @author Lin Dong |
---|
156 | * @version $Revision: 5928 $ |
---|
157 | */ |
---|
158 | public class END |
---|
159 | extends RandomizableIteratedSingleClassifierEnhancer |
---|
160 | implements TechnicalInformationHandler { |
---|
161 | |
---|
162 | /** for serialization */ |
---|
163 | static final long serialVersionUID = -4143242362912214956L; |
---|
164 | |
---|
165 | /** |
---|
166 | * The hashtable containing the classifiers for the END. |
---|
167 | */ |
---|
168 | protected Hashtable m_hashtable = null; |
---|
169 | |
---|
170 | /** |
---|
171 | * Constructor. |
---|
172 | */ |
---|
173 | public END() { |
---|
174 | |
---|
175 | m_Classifier = new weka.classifiers.meta.nestedDichotomies.ND(); |
---|
176 | } |
---|
177 | |
---|
178 | /** |
---|
179 | * String describing default classifier. |
---|
180 | * |
---|
181 | * @return the default classifier classname |
---|
182 | */ |
---|
183 | protected String defaultClassifierString() { |
---|
184 | |
---|
185 | return "weka.classifiers.meta.nestedDichotomies.ND"; |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * Returns a string describing classifier |
---|
190 | * @return a description suitable for |
---|
191 | * displaying in the explorer/experimenter gui |
---|
192 | */ |
---|
193 | public String globalInfo() { |
---|
194 | |
---|
195 | return "A meta classifier for handling multi-class datasets with 2-class " |
---|
196 | + "classifiers by building an ensemble of nested dichotomies.\n\n" |
---|
197 | + "For more info, check\n\n" |
---|
198 | + getTechnicalInformation().toString(); |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Returns an instance of a TechnicalInformation object, containing |
---|
203 | * detailed information about the technical background of this class, |
---|
204 | * e.g., paper reference or book this class is based on. |
---|
205 | * |
---|
206 | * @return the technical information about this class |
---|
207 | */ |
---|
208 | public TechnicalInformation getTechnicalInformation() { |
---|
209 | TechnicalInformation result; |
---|
210 | TechnicalInformation additional; |
---|
211 | |
---|
212 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
213 | result.setValue(Field.AUTHOR, "Lin Dong and Eibe Frank and Stefan Kramer"); |
---|
214 | result.setValue(Field.TITLE, "Ensembles of Balanced Nested Dichotomies for Multi-class Problems"); |
---|
215 | result.setValue(Field.BOOKTITLE, "PKDD"); |
---|
216 | result.setValue(Field.YEAR, "2005"); |
---|
217 | result.setValue(Field.PAGES, "84-95"); |
---|
218 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
219 | |
---|
220 | additional = result.add(Type.INPROCEEDINGS); |
---|
221 | additional.setValue(Field.AUTHOR, "Eibe Frank and Stefan Kramer"); |
---|
222 | additional.setValue(Field.TITLE, "Ensembles of nested dichotomies for multi-class problems"); |
---|
223 | additional.setValue(Field.BOOKTITLE, "Twenty-first International Conference on Machine Learning"); |
---|
224 | additional.setValue(Field.YEAR, "2004"); |
---|
225 | additional.setValue(Field.PUBLISHER, "ACM"); |
---|
226 | |
---|
227 | return result; |
---|
228 | } |
---|
229 | |
---|
230 | /** |
---|
231 | * Returns default capabilities of the classifier. |
---|
232 | * |
---|
233 | * @return the capabilities of this classifier |
---|
234 | */ |
---|
235 | public Capabilities getCapabilities() { |
---|
236 | Capabilities result = super.getCapabilities(); |
---|
237 | |
---|
238 | // instances |
---|
239 | result.setMinimumNumberInstances(1); // at least 1 for the RandomNumberGenerator! |
---|
240 | |
---|
241 | return result; |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Builds the committee of randomizable classifiers. |
---|
246 | * |
---|
247 | * @param data the training data to be used for generating the |
---|
248 | * bagged classifier. |
---|
249 | * @throws Exception if the classifier could not be built successfully |
---|
250 | */ |
---|
251 | public void buildClassifier(Instances data) throws Exception { |
---|
252 | |
---|
253 | // can classifier handle the data? |
---|
254 | getCapabilities().testWithFail(data); |
---|
255 | |
---|
256 | // remove instances with missing class |
---|
257 | data = new Instances(data); |
---|
258 | data.deleteWithMissingClass(); |
---|
259 | |
---|
260 | if (!(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ND) && |
---|
261 | !(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ClassBalancedND) && |
---|
262 | !(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.DataNearBalancedND)) { |
---|
263 | throw new IllegalArgumentException("END only works with ND, ClassBalancedND " + |
---|
264 | "or DataNearBalancedND classifier"); |
---|
265 | } |
---|
266 | |
---|
267 | m_hashtable = new Hashtable(); |
---|
268 | |
---|
269 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations); |
---|
270 | |
---|
271 | Random random = data.getRandomNumberGenerator(m_Seed); |
---|
272 | for (int j = 0; j < m_Classifiers.length; j++) { |
---|
273 | |
---|
274 | // Set the random number seed for the current classifier. |
---|
275 | ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt()); |
---|
276 | |
---|
277 | // Set the hashtable |
---|
278 | if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ND) |
---|
279 | ((weka.classifiers.meta.nestedDichotomies.ND)m_Classifiers[j]).setHashtable(m_hashtable); |
---|
280 | else if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ClassBalancedND) |
---|
281 | ((weka.classifiers.meta.nestedDichotomies.ClassBalancedND)m_Classifiers[j]).setHashtable(m_hashtable); |
---|
282 | else if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.DataNearBalancedND) |
---|
283 | ((weka.classifiers.meta.nestedDichotomies.DataNearBalancedND)m_Classifiers[j]). |
---|
284 | setHashtable(m_hashtable); |
---|
285 | |
---|
286 | // Build the classifier. |
---|
287 | m_Classifiers[j].buildClassifier(data); |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | /** |
---|
292 | * Calculates the class membership probabilities for the given test |
---|
293 | * instance. |
---|
294 | * |
---|
295 | * @param instance the instance to be classified |
---|
296 | * @return preedicted class probability distribution |
---|
297 | * @throws Exception if distribution can't be computed successfully |
---|
298 | */ |
---|
299 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
300 | |
---|
301 | double [] sums = new double [instance.numClasses()], newProbs; |
---|
302 | |
---|
303 | for (int i = 0; i < m_NumIterations; i++) { |
---|
304 | if (instance.classAttribute().isNumeric() == true) { |
---|
305 | sums[0] += m_Classifiers[i].classifyInstance(instance); |
---|
306 | } else { |
---|
307 | newProbs = m_Classifiers[i].distributionForInstance(instance); |
---|
308 | for (int j = 0; j < newProbs.length; j++) |
---|
309 | sums[j] += newProbs[j]; |
---|
310 | } |
---|
311 | } |
---|
312 | if (instance.classAttribute().isNumeric() == true) { |
---|
313 | sums[0] /= (double)m_NumIterations; |
---|
314 | return sums; |
---|
315 | } else if (Utils.eq(Utils.sum(sums), 0)) { |
---|
316 | return sums; |
---|
317 | } else { |
---|
318 | Utils.normalize(sums); |
---|
319 | return sums; |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | /** |
---|
324 | * Returns description of the committee. |
---|
325 | * |
---|
326 | * @return description of the committee as a string |
---|
327 | */ |
---|
328 | public String toString() { |
---|
329 | |
---|
330 | if (m_Classifiers == null) { |
---|
331 | return "END: No model built yet."; |
---|
332 | } |
---|
333 | StringBuffer text = new StringBuffer(); |
---|
334 | text.append("All the base classifiers: \n\n"); |
---|
335 | for (int i = 0; i < m_Classifiers.length; i++) |
---|
336 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
337 | |
---|
338 | return text.toString(); |
---|
339 | } |
---|
340 | |
---|
341 | /** |
---|
342 | * Returns the revision string. |
---|
343 | * |
---|
344 | * @return the revision |
---|
345 | */ |
---|
346 | public String getRevision() { |
---|
347 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
348 | } |
---|
349 | |
---|
350 | /** |
---|
351 | * Main method for testing this class. |
---|
352 | * |
---|
353 | * @param argv the options |
---|
354 | */ |
---|
355 | public static void main(String [] argv) { |
---|
356 | runClassifier(new END(), argv); |
---|
357 | } |
---|
358 | } |
---|