[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * END.java |
---|
| 19 | * Copyright (C) 2004-2005 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
| 28 | import weka.core.Capabilities; |
---|
| 29 | import weka.core.Instance; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.core.Randomizable; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.TechnicalInformation; |
---|
| 34 | import weka.core.TechnicalInformationHandler; |
---|
| 35 | import weka.core.Utils; |
---|
| 36 | import weka.core.TechnicalInformation.Field; |
---|
| 37 | import weka.core.TechnicalInformation.Type; |
---|
| 38 | |
---|
| 39 | import java.util.Hashtable; |
---|
| 40 | import java.util.Random; |
---|
| 41 | |
---|
| 42 | /** |
---|
| 43 | <!-- globalinfo-start --> |
---|
| 44 | * A meta classifier for handling multi-class datasets with 2-class classifiers by building an ensemble of nested dichotomies.<br/> |
---|
| 45 | * <br/> |
---|
| 46 | * For more info, check<br/> |
---|
| 47 | * <br/> |
---|
| 48 | * Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005.<br/> |
---|
| 49 | * <br/> |
---|
| 50 | * Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems. In: Twenty-first International Conference on Machine Learning, 2004. |
---|
| 51 | * <p/> |
---|
| 52 | <!-- globalinfo-end --> |
---|
| 53 | * |
---|
| 54 | <!-- technical-bibtex-start --> |
---|
| 55 | * BibTeX: |
---|
| 56 | * <pre> |
---|
| 57 | * @inproceedings{Dong2005, |
---|
| 58 | * author = {Lin Dong and Eibe Frank and Stefan Kramer}, |
---|
| 59 | * booktitle = {PKDD}, |
---|
| 60 | * pages = {84-95}, |
---|
| 61 | * publisher = {Springer}, |
---|
| 62 | * title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems}, |
---|
| 63 | * year = {2005} |
---|
| 64 | * } |
---|
| 65 | * |
---|
| 66 | * @inproceedings{Frank2004, |
---|
| 67 | * author = {Eibe Frank and Stefan Kramer}, |
---|
| 68 | * booktitle = {Twenty-first International Conference on Machine Learning}, |
---|
| 69 | * publisher = {ACM}, |
---|
| 70 | * title = {Ensembles of nested dichotomies for multi-class problems}, |
---|
| 71 | * year = {2004} |
---|
| 72 | * } |
---|
| 73 | * </pre> |
---|
| 74 | * <p/> |
---|
| 75 | <!-- technical-bibtex-end --> |
---|
| 76 | * |
---|
| 77 | <!-- options-start --> |
---|
| 78 | * Valid options are: <p/> |
---|
| 79 | * |
---|
| 80 | * <pre> -S <num> |
---|
| 81 | * Random number seed. |
---|
| 82 | * (default 1)</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -I <num> |
---|
| 85 | * Number of iterations. |
---|
| 86 | * (default 10)</pre> |
---|
| 87 | * |
---|
| 88 | * <pre> -D |
---|
| 89 | * If set, classifier is run in debug mode and |
---|
| 90 | * may output additional info to the console</pre> |
---|
| 91 | * |
---|
| 92 | * <pre> -W |
---|
| 93 | * Full name of base classifier. |
---|
| 94 | * (default: weka.classifiers.meta.nestedDichotomies.ND)</pre> |
---|
| 95 | * |
---|
| 96 | * <pre> |
---|
| 97 | * Options specific to classifier weka.classifiers.meta.nestedDichotomies.ND: |
---|
| 98 | * </pre> |
---|
| 99 | * |
---|
| 100 | * <pre> -S <num> |
---|
| 101 | * Random number seed. |
---|
| 102 | * (default 1)</pre> |
---|
| 103 | * |
---|
| 104 | * <pre> -D |
---|
| 105 | * If set, classifier is run in debug mode and |
---|
| 106 | * may output additional info to the console</pre> |
---|
| 107 | * |
---|
| 108 | * <pre> -W |
---|
| 109 | * Full name of base classifier. |
---|
| 110 | * (default: weka.classifiers.trees.J48)</pre> |
---|
| 111 | * |
---|
| 112 | * <pre> |
---|
| 113 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
| 114 | * </pre> |
---|
| 115 | * |
---|
| 116 | * <pre> -U |
---|
| 117 | * Use unpruned tree.</pre> |
---|
| 118 | * |
---|
| 119 | * <pre> -C <pruning confidence> |
---|
| 120 | * Set confidence threshold for pruning. |
---|
| 121 | * (default 0.25)</pre> |
---|
| 122 | * |
---|
| 123 | * <pre> -M <minimum number of instances> |
---|
| 124 | * Set minimum number of instances per leaf. |
---|
| 125 | * (default 2)</pre> |
---|
| 126 | * |
---|
| 127 | * <pre> -R |
---|
| 128 | * Use reduced error pruning.</pre> |
---|
| 129 | * |
---|
| 130 | * <pre> -N <number of folds> |
---|
| 131 | * Set number of folds for reduced error |
---|
| 132 | * pruning. One fold is used as pruning set. |
---|
| 133 | * (default 3)</pre> |
---|
| 134 | * |
---|
| 135 | * <pre> -B |
---|
| 136 | * Use binary splits only.</pre> |
---|
| 137 | * |
---|
| 138 | * <pre> -S |
---|
| 139 | * Don't perform subtree raising.</pre> |
---|
| 140 | * |
---|
| 141 | * <pre> -L |
---|
| 142 | * Do not clean up after the tree has been built.</pre> |
---|
| 143 | * |
---|
| 144 | * <pre> -A |
---|
| 145 | * Laplace smoothing for predicted probabilities.</pre> |
---|
| 146 | * |
---|
| 147 | * <pre> -Q <seed> |
---|
| 148 | * Seed for random data shuffling (default 1).</pre> |
---|
| 149 | * |
---|
| 150 | <!-- options-end --> |
---|
| 151 | * |
---|
| 152 | * Options after -- are passed to the designated classifier.<p> |
---|
| 153 | * |
---|
| 154 | * @author Eibe Frank |
---|
| 155 | * @author Lin Dong |
---|
| 156 | * @version $Revision: 5928 $ |
---|
| 157 | */ |
---|
| 158 | public class END |
---|
| 159 | extends RandomizableIteratedSingleClassifierEnhancer |
---|
| 160 | implements TechnicalInformationHandler { |
---|
| 161 | |
---|
| 162 | /** for serialization */ |
---|
| 163 | static final long serialVersionUID = -4143242362912214956L; |
---|
| 164 | |
---|
| 165 | /** |
---|
| 166 | * The hashtable containing the classifiers for the END. |
---|
| 167 | */ |
---|
| 168 | protected Hashtable m_hashtable = null; |
---|
| 169 | |
---|
| 170 | /** |
---|
| 171 | * Constructor. |
---|
| 172 | */ |
---|
| 173 | public END() { |
---|
| 174 | |
---|
| 175 | m_Classifier = new weka.classifiers.meta.nestedDichotomies.ND(); |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | /** |
---|
| 179 | * String describing default classifier. |
---|
| 180 | * |
---|
| 181 | * @return the default classifier classname |
---|
| 182 | */ |
---|
| 183 | protected String defaultClassifierString() { |
---|
| 184 | |
---|
| 185 | return "weka.classifiers.meta.nestedDichotomies.ND"; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Returns a string describing classifier |
---|
| 190 | * @return a description suitable for |
---|
| 191 | * displaying in the explorer/experimenter gui |
---|
| 192 | */ |
---|
| 193 | public String globalInfo() { |
---|
| 194 | |
---|
| 195 | return "A meta classifier for handling multi-class datasets with 2-class " |
---|
| 196 | + "classifiers by building an ensemble of nested dichotomies.\n\n" |
---|
| 197 | + "For more info, check\n\n" |
---|
| 198 | + getTechnicalInformation().toString(); |
---|
| 199 | } |
---|
| 200 | |
---|
| 201 | /** |
---|
| 202 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 203 | * detailed information about the technical background of this class, |
---|
| 204 | * e.g., paper reference or book this class is based on. |
---|
| 205 | * |
---|
| 206 | * @return the technical information about this class |
---|
| 207 | */ |
---|
| 208 | public TechnicalInformation getTechnicalInformation() { |
---|
| 209 | TechnicalInformation result; |
---|
| 210 | TechnicalInformation additional; |
---|
| 211 | |
---|
| 212 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 213 | result.setValue(Field.AUTHOR, "Lin Dong and Eibe Frank and Stefan Kramer"); |
---|
| 214 | result.setValue(Field.TITLE, "Ensembles of Balanced Nested Dichotomies for Multi-class Problems"); |
---|
| 215 | result.setValue(Field.BOOKTITLE, "PKDD"); |
---|
| 216 | result.setValue(Field.YEAR, "2005"); |
---|
| 217 | result.setValue(Field.PAGES, "84-95"); |
---|
| 218 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
| 219 | |
---|
| 220 | additional = result.add(Type.INPROCEEDINGS); |
---|
| 221 | additional.setValue(Field.AUTHOR, "Eibe Frank and Stefan Kramer"); |
---|
| 222 | additional.setValue(Field.TITLE, "Ensembles of nested dichotomies for multi-class problems"); |
---|
| 223 | additional.setValue(Field.BOOKTITLE, "Twenty-first International Conference on Machine Learning"); |
---|
| 224 | additional.setValue(Field.YEAR, "2004"); |
---|
| 225 | additional.setValue(Field.PUBLISHER, "ACM"); |
---|
| 226 | |
---|
| 227 | return result; |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | /** |
---|
| 231 | * Returns default capabilities of the classifier. |
---|
| 232 | * |
---|
| 233 | * @return the capabilities of this classifier |
---|
| 234 | */ |
---|
| 235 | public Capabilities getCapabilities() { |
---|
| 236 | Capabilities result = super.getCapabilities(); |
---|
| 237 | |
---|
| 238 | // instances |
---|
| 239 | result.setMinimumNumberInstances(1); // at least 1 for the RandomNumberGenerator! |
---|
| 240 | |
---|
| 241 | return result; |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | /** |
---|
| 245 | * Builds the committee of randomizable classifiers. |
---|
| 246 | * |
---|
| 247 | * @param data the training data to be used for generating the |
---|
| 248 | * bagged classifier. |
---|
| 249 | * @throws Exception if the classifier could not be built successfully |
---|
| 250 | */ |
---|
| 251 | public void buildClassifier(Instances data) throws Exception { |
---|
| 252 | |
---|
| 253 | // can classifier handle the data? |
---|
| 254 | getCapabilities().testWithFail(data); |
---|
| 255 | |
---|
| 256 | // remove instances with missing class |
---|
| 257 | data = new Instances(data); |
---|
| 258 | data.deleteWithMissingClass(); |
---|
| 259 | |
---|
| 260 | if (!(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ND) && |
---|
| 261 | !(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ClassBalancedND) && |
---|
| 262 | !(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.DataNearBalancedND)) { |
---|
| 263 | throw new IllegalArgumentException("END only works with ND, ClassBalancedND " + |
---|
| 264 | "or DataNearBalancedND classifier"); |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | m_hashtable = new Hashtable(); |
---|
| 268 | |
---|
| 269 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations); |
---|
| 270 | |
---|
| 271 | Random random = data.getRandomNumberGenerator(m_Seed); |
---|
| 272 | for (int j = 0; j < m_Classifiers.length; j++) { |
---|
| 273 | |
---|
| 274 | // Set the random number seed for the current classifier. |
---|
| 275 | ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt()); |
---|
| 276 | |
---|
| 277 | // Set the hashtable |
---|
| 278 | if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ND) |
---|
| 279 | ((weka.classifiers.meta.nestedDichotomies.ND)m_Classifiers[j]).setHashtable(m_hashtable); |
---|
| 280 | else if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ClassBalancedND) |
---|
| 281 | ((weka.classifiers.meta.nestedDichotomies.ClassBalancedND)m_Classifiers[j]).setHashtable(m_hashtable); |
---|
| 282 | else if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.DataNearBalancedND) |
---|
| 283 | ((weka.classifiers.meta.nestedDichotomies.DataNearBalancedND)m_Classifiers[j]). |
---|
| 284 | setHashtable(m_hashtable); |
---|
| 285 | |
---|
| 286 | // Build the classifier. |
---|
| 287 | m_Classifiers[j].buildClassifier(data); |
---|
| 288 | } |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | /** |
---|
| 292 | * Calculates the class membership probabilities for the given test |
---|
| 293 | * instance. |
---|
| 294 | * |
---|
| 295 | * @param instance the instance to be classified |
---|
| 296 | * @return preedicted class probability distribution |
---|
| 297 | * @throws Exception if distribution can't be computed successfully |
---|
| 298 | */ |
---|
| 299 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 300 | |
---|
| 301 | double [] sums = new double [instance.numClasses()], newProbs; |
---|
| 302 | |
---|
| 303 | for (int i = 0; i < m_NumIterations; i++) { |
---|
| 304 | if (instance.classAttribute().isNumeric() == true) { |
---|
| 305 | sums[0] += m_Classifiers[i].classifyInstance(instance); |
---|
| 306 | } else { |
---|
| 307 | newProbs = m_Classifiers[i].distributionForInstance(instance); |
---|
| 308 | for (int j = 0; j < newProbs.length; j++) |
---|
| 309 | sums[j] += newProbs[j]; |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | if (instance.classAttribute().isNumeric() == true) { |
---|
| 313 | sums[0] /= (double)m_NumIterations; |
---|
| 314 | return sums; |
---|
| 315 | } else if (Utils.eq(Utils.sum(sums), 0)) { |
---|
| 316 | return sums; |
---|
| 317 | } else { |
---|
| 318 | Utils.normalize(sums); |
---|
| 319 | return sums; |
---|
| 320 | } |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | /** |
---|
| 324 | * Returns description of the committee. |
---|
| 325 | * |
---|
| 326 | * @return description of the committee as a string |
---|
| 327 | */ |
---|
| 328 | public String toString() { |
---|
| 329 | |
---|
| 330 | if (m_Classifiers == null) { |
---|
| 331 | return "END: No model built yet."; |
---|
| 332 | } |
---|
| 333 | StringBuffer text = new StringBuffer(); |
---|
| 334 | text.append("All the base classifiers: \n\n"); |
---|
| 335 | for (int i = 0; i < m_Classifiers.length; i++) |
---|
| 336 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
| 337 | |
---|
| 338 | return text.toString(); |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | /** |
---|
| 342 | * Returns the revision string. |
---|
| 343 | * |
---|
| 344 | * @return the revision |
---|
| 345 | */ |
---|
| 346 | public String getRevision() { |
---|
| 347 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 348 | } |
---|
| 349 | |
---|
| 350 | /** |
---|
| 351 | * Main method for testing this class. |
---|
| 352 | * |
---|
| 353 | * @param argv the options |
---|
| 354 | */ |
---|
| 355 | public static void main(String [] argv) { |
---|
| 356 | runClassifier(new END(), argv); |
---|
| 357 | } |
---|
| 358 | } |
---|