/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Dagging.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.meta; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.RandomizableSingleClassifierEnhancer; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.util.Enumeration; import java.util.Vector; /** * This meta classifier creates a number of disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the supplied base classifier. Predictions are made via majority vote, since all the generated base classifiers are put into the Vote meta classifier.
* Useful for base classifiers that are quadratic or worse in time behavior, regarding number of instances in the training data.
*
* For more information, see:
* Ting, K. M., Witten, I. H.: Stacking Bagged and Dagged Models. In: Fourteenth international Conference on Machine Learning, San Francisco, CA, 367-375, 1997. *

* * BibTeX: *

 * @inproceedings{Ting1997,
 *    address = {San Francisco, CA},
 *    author = {Ting, K. M. and Witten, I. H.},
 *    booktitle = {Fourteenth international Conference on Machine Learning},
 *    editor = {D. H. Fisher},
 *    pages = {367-375},
 *    publisher = {Morgan Kaufmann Publishers},
 *    title = {Stacking Bagged and Dagged Models},
 *    year = {1997}
 * }
 * 
*

* * Valid options are:

* *

 -F <folds>
 *  The number of folds for splitting the training set into
 *  smaller chunks for the base classifier.
 *  (default 10)
* *
 -verbose
 *  Whether to print some more information during building the
 *  classifier.
 *  (default is off)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.functions.SMO)
* *
 
 * Options specific to classifier weka.classifiers.functions.SMO:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -no-checks
 *  Turns off all checks - use with caution!
 *  Turning them off assumes that data is purely numeric, doesn't
 *  contain any missing values, and has a nominal class. Turning them
 *  off also means that no header information will be stored if the
 *  machine is linear. Finally, it also assumes that no instance has
 *  a weight equal to 0.
 *  (default: checks on)
* *
 -C <double>
 *  The complexity constant C. (default 1)
* *
 -N
 *  Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)
* *
 -L <double>
 *  The tolerance parameter. (default 1.0e-3)
* *
 -P <double>
 *  The epsilon for round-off error. (default 1.0e-12)
* *
 -M
 *  Fit logistic models to SVM outputs. 
* *
 -V <double>
 *  The number of folds for the internal
 *  cross-validation. (default -1, use training data)
* *
 -W <double>
 *  The random number seed. (default 1)
* *
 -K <classname and parameters>
 *  The Kernel to use.
 *  (default: weka.classifiers.functions.supportVector.PolyKernel)
* *
 
 * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
 * 
* *
 -D
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* *
 -no-checks
 *  Turns off all checks - use with caution!
 *  (default: checks on)
* *
 -C <num>
 *  The size of the cache (a prime number), 0 for full cache and 
 *  -1 to turn it off.
 *  (default: 250007)
* *
 -E <num>
 *  The Exponent to use.
 *  (default: 1.0)
* *
 -L
 *  Use lower-order terms.
 *  (default: no)
* * * Options after -- are passed to the designated classifier.

* * @author Bernhard Pfahringer (bernhard at cs dot waikato dot ac dot nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 5928 $ * @see Vote */ public class Dagging extends RandomizableSingleClassifierEnhancer implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 4560165876570074309L; /** the number of folds to use to split the training data */ protected int m_NumFolds = 10; /** the classifier used for voting */ protected Vote m_Vote = null; /** whether to output some progress information during building */ protected boolean m_Verbose = false; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "This meta classifier creates a number of disjoint, stratified folds out " + "of the data and feeds each chunk of data to a copy of the supplied " + "base classifier. Predictions are made via averaging, since all the " + "generated base classifiers are put into the Vote meta classifier. \n" + "Useful for base classifiers that are quadratic or worse in time " + "behavior, regarding number of instances in the training data. \n" + "\n" + "For more information, see: \n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Ting, K. M. and Witten, I. H."); result.setValue(Field.TITLE, "Stacking Bagged and Dagged Models"); result.setValue(Field.BOOKTITLE, "Fourteenth international Conference on Machine Learning"); result.setValue(Field.EDITOR, "D. H. Fisher"); result.setValue(Field.YEAR, "1997"); result.setValue(Field.PAGES, "367-375"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); result.setValue(Field.ADDRESS, "San Francisco, CA"); return result; } /** * Constructor. */ public Dagging() { m_Classifier = new weka.classifiers.functions.SMO(); } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return weka.classifiers.functions.SMO.class.getName(); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tThe number of folds for splitting the training set into\n" + "\tsmaller chunks for the base classifier.\n" + "\t(default 10)", "F", 1, "-F ")); result.addElement(new Option( "\tWhether to print some more information during building the\n" + "\tclassifier.\n" + "\t(default is off)", "verbose", 0, "-verbose")); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -F <folds>
   *  The number of folds for splitting the training set into
   *  smaller chunks for the base classifier.
   *  (default 10)
* *
 -verbose
   *  Whether to print some more information during building the
   *  classifier.
   *  (default is off)
* *
 -S <num>
   *  Random number seed.
   *  (default 1)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -W
   *  Full name of base classifier.
   *  (default: weka.classifiers.functions.SMO)
* *
 
   * Options specific to classifier weka.classifiers.functions.SMO:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -no-checks
   *  Turns off all checks - use with caution!
   *  Turning them off assumes that data is purely numeric, doesn't
   *  contain any missing values, and has a nominal class. Turning them
   *  off also means that no header information will be stored if the
   *  machine is linear. Finally, it also assumes that no instance has
   *  a weight equal to 0.
   *  (default: checks on)
* *
 -C <double>
   *  The complexity constant C. (default 1)
* *
 -N
   *  Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)
* *
 -L <double>
   *  The tolerance parameter. (default 1.0e-3)
* *
 -P <double>
   *  The epsilon for round-off error. (default 1.0e-12)
* *
 -M
   *  Fit logistic models to SVM outputs. 
* *
 -V <double>
   *  The number of folds for the internal
   *  cross-validation. (default -1, use training data)
* *
 -W <double>
   *  The random number seed. (default 1)
* *
 -K <classname and parameters>
   *  The Kernel to use.
   *  (default: weka.classifiers.functions.supportVector.PolyKernel)
* *
 
   * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
   * 
* *
 -D
   *  Enables debugging output (if available) to be printed.
   *  (default: off)
* *
 -no-checks
   *  Turns off all checks - use with caution!
   *  (default: checks on)
* *
 -C <num>
   *  The size of the cache (a prime number), 0 for full cache and 
   *  -1 to turn it off.
   *  (default: 250007)
* *
 -E <num>
   *  The Exponent to use.
   *  (default: 1.0)
* *
 -L
   *  Use lower-order terms.
   *  (default: no)
* * * Options after -- are passed to the designated classifier.

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('F', options); if (tmpStr.length() != 0) setNumFolds(Integer.parseInt(tmpStr)); else setNumFolds(10); setVerbose(Utils.getFlag("verbose", options)); super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); result.add("-F"); result.add("" + getNumFolds()); if (getVerbose()) result.add("-verbose"); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Gets the number of folds to use for splitting the training set. * * @return the number of folds */ public int getNumFolds() { return m_NumFolds; } /** * Sets the number of folds to use for splitting the training set. * * @param value the new number of folds */ public void setNumFolds(int value) { if (value > 0) m_NumFolds = value; else System.out.println( "At least 1 fold is necessary (provided: " + value + ")!"); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsTipText() { return "The number of folds to use for splitting the training set into smaller chunks for the base classifier."; } /** * Set the verbose state. * * @param value the verbose state */ public void setVerbose(boolean value) { m_Verbose = value; } /** * Gets the verbose state * * @return the verbose state */ public boolean getVerbose() { return m_Verbose; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String verboseTipText() { return "Whether to ouput some additional information during building."; } /** * Bagging method. * * @param data the training data to be used for generating the * bagged classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { Classifier[] base; int i; int n; int fromIndex; int toIndex; Instances train; double chunkSize; // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); m_Vote = new Vote(); base = new Classifier[getNumFolds()]; chunkSize = (double) data.numInstances() / (double) getNumFolds(); // stratify data if (getNumFolds() > 1) { data.randomize(data.getRandomNumberGenerator(getSeed())); data.stratify(getNumFolds()); } // generate classifiers for (i = 0; i < getNumFolds(); i++) { base[i] = makeCopy(getClassifier()); // generate training data if (getNumFolds() > 1) { // some progress information if (getVerbose()) System.out.print("."); train = data.testCV(getNumFolds(), i); } else { train = data; } // train classifier base[i].buildClassifier(train); } // init vote m_Vote.setClassifiers(base); if (getVerbose()) System.out.println(); } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return preedicted class probability distribution * @throws Exception if distribution can't be computed successfully */ public double[] distributionForInstance(Instance instance) throws Exception { return m_Vote.distributionForInstance(instance); } /** * Returns description of the classifier. * * @return description of the classifier as a string */ public String toString() { if (m_Vote == null) return this.getClass().getName().replaceAll(".*\\.", "") + ": No model built yet."; else return m_Vote.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param args the options */ public static void main(String[] args) { runClassifier(new Dagging(), args); } }