[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Dagging.java |
---|
| 19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.RandomizableSingleClassifierEnhancer; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.RevisionUtils; |
---|
| 32 | import weka.core.TechnicalInformation; |
---|
| 33 | import weka.core.TechnicalInformationHandler; |
---|
| 34 | import weka.core.Utils; |
---|
| 35 | import weka.core.TechnicalInformation.Field; |
---|
| 36 | import weka.core.TechnicalInformation.Type; |
---|
| 37 | |
---|
| 38 | import java.util.Enumeration; |
---|
| 39 | import java.util.Vector; |
---|
| 40 | |
---|
| 41 | /** |
---|
| 42 | <!-- globalinfo-start --> |
---|
| 43 | * This meta classifier creates a number of disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the supplied base classifier. Predictions are made via majority vote, since all the generated base classifiers are put into the Vote meta classifier. <br/> |
---|
| 44 | * Useful for base classifiers that are quadratic or worse in time behavior, regarding number of instances in the training data. <br/> |
---|
| 45 | * <br/> |
---|
| 46 | * For more information, see: <br/> |
---|
| 47 | * Ting, K. M., Witten, I. H.: Stacking Bagged and Dagged Models. In: Fourteenth international Conference on Machine Learning, San Francisco, CA, 367-375, 1997. |
---|
| 48 | * <p/> |
---|
| 49 | <!-- globalinfo-end --> |
---|
| 50 | * |
---|
| 51 | <!-- technical-bibtex-start --> |
---|
| 52 | * BibTeX: |
---|
| 53 | * <pre> |
---|
| 54 | * @inproceedings{Ting1997, |
---|
| 55 | * address = {San Francisco, CA}, |
---|
| 56 | * author = {Ting, K. M. and Witten, I. H.}, |
---|
| 57 | * booktitle = {Fourteenth international Conference on Machine Learning}, |
---|
| 58 | * editor = {D. H. Fisher}, |
---|
| 59 | * pages = {367-375}, |
---|
| 60 | * publisher = {Morgan Kaufmann Publishers}, |
---|
| 61 | * title = {Stacking Bagged and Dagged Models}, |
---|
| 62 | * year = {1997} |
---|
| 63 | * } |
---|
| 64 | * </pre> |
---|
| 65 | * <p/> |
---|
| 66 | <!-- technical-bibtex-end --> |
---|
| 67 | * |
---|
| 68 | <!-- options-start --> |
---|
| 69 | * Valid options are: <p/> |
---|
| 70 | * |
---|
| 71 | * <pre> -F <folds> |
---|
| 72 | * The number of folds for splitting the training set into |
---|
| 73 | * smaller chunks for the base classifier. |
---|
| 74 | * (default 10)</pre> |
---|
| 75 | * |
---|
| 76 | * <pre> -verbose |
---|
| 77 | * Whether to print some more information during building the |
---|
| 78 | * classifier. |
---|
| 79 | * (default is off)</pre> |
---|
| 80 | * |
---|
| 81 | * <pre> -S <num> |
---|
| 82 | * Random number seed. |
---|
| 83 | * (default 1)</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -D |
---|
| 86 | * If set, classifier is run in debug mode and |
---|
| 87 | * may output additional info to the console</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -W |
---|
| 90 | * Full name of base classifier. |
---|
| 91 | * (default: weka.classifiers.functions.SMO)</pre> |
---|
| 92 | * |
---|
| 93 | * <pre> |
---|
| 94 | * Options specific to classifier weka.classifiers.functions.SMO: |
---|
| 95 | * </pre> |
---|
| 96 | * |
---|
| 97 | * <pre> -D |
---|
| 98 | * If set, classifier is run in debug mode and |
---|
| 99 | * may output additional info to the console</pre> |
---|
| 100 | * |
---|
| 101 | * <pre> -no-checks |
---|
| 102 | * Turns off all checks - use with caution! |
---|
| 103 | * Turning them off assumes that data is purely numeric, doesn't |
---|
| 104 | * contain any missing values, and has a nominal class. Turning them |
---|
| 105 | * off also means that no header information will be stored if the |
---|
| 106 | * machine is linear. Finally, it also assumes that no instance has |
---|
| 107 | * a weight equal to 0. |
---|
| 108 | * (default: checks on)</pre> |
---|
| 109 | * |
---|
| 110 | * <pre> -C <double> |
---|
| 111 | * The complexity constant C. (default 1)</pre> |
---|
| 112 | * |
---|
| 113 | * <pre> -N |
---|
| 114 | * Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre> |
---|
| 115 | * |
---|
| 116 | * <pre> -L <double> |
---|
| 117 | * The tolerance parameter. (default 1.0e-3)</pre> |
---|
| 118 | * |
---|
| 119 | * <pre> -P <double> |
---|
| 120 | * The epsilon for round-off error. (default 1.0e-12)</pre> |
---|
| 121 | * |
---|
| 122 | * <pre> -M |
---|
| 123 | * Fit logistic models to SVM outputs. </pre> |
---|
| 124 | * |
---|
| 125 | * <pre> -V <double> |
---|
| 126 | * The number of folds for the internal |
---|
| 127 | * cross-validation. (default -1, use training data)</pre> |
---|
| 128 | * |
---|
| 129 | * <pre> -W <double> |
---|
| 130 | * The random number seed. (default 1)</pre> |
---|
| 131 | * |
---|
| 132 | * <pre> -K <classname and parameters> |
---|
| 133 | * The Kernel to use. |
---|
| 134 | * (default: weka.classifiers.functions.supportVector.PolyKernel)</pre> |
---|
| 135 | * |
---|
| 136 | * <pre> |
---|
| 137 | * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: |
---|
| 138 | * </pre> |
---|
| 139 | * |
---|
| 140 | * <pre> -D |
---|
| 141 | * Enables debugging output (if available) to be printed. |
---|
| 142 | * (default: off)</pre> |
---|
| 143 | * |
---|
| 144 | * <pre> -no-checks |
---|
| 145 | * Turns off all checks - use with caution! |
---|
| 146 | * (default: checks on)</pre> |
---|
| 147 | * |
---|
| 148 | * <pre> -C <num> |
---|
| 149 | * The size of the cache (a prime number), 0 for full cache and |
---|
| 150 | * -1 to turn it off. |
---|
| 151 | * (default: 250007)</pre> |
---|
| 152 | * |
---|
| 153 | * <pre> -E <num> |
---|
| 154 | * The Exponent to use. |
---|
| 155 | * (default: 1.0)</pre> |
---|
| 156 | * |
---|
| 157 | * <pre> -L |
---|
| 158 | * Use lower-order terms. |
---|
| 159 | * (default: no)</pre> |
---|
| 160 | * |
---|
| 161 | <!-- options-end --> |
---|
| 162 | * |
---|
| 163 | * Options after -- are passed to the designated classifier.<p/> |
---|
| 164 | * |
---|
| 165 | * @author Bernhard Pfahringer (bernhard at cs dot waikato dot ac dot nz) |
---|
| 166 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
| 167 | * @version $Revision: 5928 $ |
---|
| 168 | * @see Vote |
---|
| 169 | */ |
---|
| 170 | public class Dagging |
---|
| 171 | extends RandomizableSingleClassifierEnhancer |
---|
| 172 | implements TechnicalInformationHandler { |
---|
| 173 | |
---|
| 174 | /** for serialization */ |
---|
| 175 | static final long serialVersionUID = 4560165876570074309L; |
---|
| 176 | |
---|
| 177 | /** the number of folds to use to split the training data */ |
---|
| 178 | protected int m_NumFolds = 10; |
---|
| 179 | |
---|
| 180 | /** the classifier used for voting */ |
---|
| 181 | protected Vote m_Vote = null; |
---|
| 182 | |
---|
| 183 | /** whether to output some progress information during building */ |
---|
| 184 | protected boolean m_Verbose = false; |
---|
| 185 | |
---|
| 186 | /** |
---|
| 187 | * Returns a string describing classifier |
---|
| 188 | * @return a description suitable for |
---|
| 189 | * displaying in the explorer/experimenter gui |
---|
| 190 | */ |
---|
| 191 | public String globalInfo() { |
---|
| 192 | return |
---|
| 193 | "This meta classifier creates a number of disjoint, stratified folds out " |
---|
| 194 | + "of the data and feeds each chunk of data to a copy of the supplied " |
---|
| 195 | + "base classifier. Predictions are made via averaging, since all the " |
---|
| 196 | + "generated base classifiers are put into the Vote meta classifier. \n" |
---|
| 197 | + "Useful for base classifiers that are quadratic or worse in time " |
---|
| 198 | + "behavior, regarding number of instances in the training data. \n" |
---|
| 199 | + "\n" |
---|
| 200 | + "For more information, see: \n" |
---|
| 201 | + getTechnicalInformation().toString(); |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 206 | * detailed information about the technical background of this class, |
---|
| 207 | * e.g., paper reference or book this class is based on. |
---|
| 208 | * |
---|
| 209 | * @return the technical information about this class |
---|
| 210 | */ |
---|
| 211 | public TechnicalInformation getTechnicalInformation() { |
---|
| 212 | TechnicalInformation result; |
---|
| 213 | |
---|
| 214 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 215 | result.setValue(Field.AUTHOR, "Ting, K. M. and Witten, I. H."); |
---|
| 216 | result.setValue(Field.TITLE, "Stacking Bagged and Dagged Models"); |
---|
| 217 | result.setValue(Field.BOOKTITLE, "Fourteenth international Conference on Machine Learning"); |
---|
| 218 | result.setValue(Field.EDITOR, "D. H. Fisher"); |
---|
| 219 | result.setValue(Field.YEAR, "1997"); |
---|
| 220 | result.setValue(Field.PAGES, "367-375"); |
---|
| 221 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); |
---|
| 222 | result.setValue(Field.ADDRESS, "San Francisco, CA"); |
---|
| 223 | |
---|
| 224 | return result; |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | /** |
---|
| 228 | * Constructor. |
---|
| 229 | */ |
---|
| 230 | public Dagging() { |
---|
| 231 | m_Classifier = new weka.classifiers.functions.SMO(); |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | /** |
---|
| 235 | * String describing default classifier. |
---|
| 236 | * |
---|
| 237 | * @return the default classifier classname |
---|
| 238 | */ |
---|
| 239 | protected String defaultClassifierString() { |
---|
| 240 | return weka.classifiers.functions.SMO.class.getName(); |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | /** |
---|
| 244 | * Returns an enumeration describing the available options. |
---|
| 245 | * |
---|
| 246 | * @return an enumeration of all the available options. |
---|
| 247 | */ |
---|
| 248 | public Enumeration listOptions() { |
---|
| 249 | Vector result = new Vector(); |
---|
| 250 | |
---|
| 251 | result.addElement(new Option( |
---|
| 252 | "\tThe number of folds for splitting the training set into\n" |
---|
| 253 | + "\tsmaller chunks for the base classifier.\n" |
---|
| 254 | + "\t(default 10)", |
---|
| 255 | "F", 1, "-F <folds>")); |
---|
| 256 | |
---|
| 257 | result.addElement(new Option( |
---|
| 258 | "\tWhether to print some more information during building the\n" |
---|
| 259 | + "\tclassifier.\n" |
---|
| 260 | + "\t(default is off)", |
---|
| 261 | "verbose", 0, "-verbose")); |
---|
| 262 | |
---|
| 263 | Enumeration en = super.listOptions(); |
---|
| 264 | while (en.hasMoreElements()) |
---|
| 265 | result.addElement(en.nextElement()); |
---|
| 266 | |
---|
| 267 | return result.elements(); |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | |
---|
| 271 | /** |
---|
| 272 | * Parses a given list of options. <p/> |
---|
| 273 | * |
---|
| 274 | <!-- options-start --> |
---|
| 275 | * Valid options are: <p/> |
---|
| 276 | * |
---|
| 277 | * <pre> -F <folds> |
---|
| 278 | * The number of folds for splitting the training set into |
---|
| 279 | * smaller chunks for the base classifier. |
---|
| 280 | * (default 10)</pre> |
---|
| 281 | * |
---|
| 282 | * <pre> -verbose |
---|
| 283 | * Whether to print some more information during building the |
---|
| 284 | * classifier. |
---|
| 285 | * (default is off)</pre> |
---|
| 286 | * |
---|
| 287 | * <pre> -S <num> |
---|
| 288 | * Random number seed. |
---|
| 289 | * (default 1)</pre> |
---|
| 290 | * |
---|
| 291 | * <pre> -D |
---|
| 292 | * If set, classifier is run in debug mode and |
---|
| 293 | * may output additional info to the console</pre> |
---|
| 294 | * |
---|
| 295 | * <pre> -W |
---|
| 296 | * Full name of base classifier. |
---|
| 297 | * (default: weka.classifiers.functions.SMO)</pre> |
---|
| 298 | * |
---|
| 299 | * <pre> |
---|
| 300 | * Options specific to classifier weka.classifiers.functions.SMO: |
---|
| 301 | * </pre> |
---|
| 302 | * |
---|
| 303 | * <pre> -D |
---|
| 304 | * If set, classifier is run in debug mode and |
---|
| 305 | * may output additional info to the console</pre> |
---|
| 306 | * |
---|
| 307 | * <pre> -no-checks |
---|
| 308 | * Turns off all checks - use with caution! |
---|
| 309 | * Turning them off assumes that data is purely numeric, doesn't |
---|
| 310 | * contain any missing values, and has a nominal class. Turning them |
---|
| 311 | * off also means that no header information will be stored if the |
---|
| 312 | * machine is linear. Finally, it also assumes that no instance has |
---|
| 313 | * a weight equal to 0. |
---|
| 314 | * (default: checks on)</pre> |
---|
| 315 | * |
---|
| 316 | * <pre> -C <double> |
---|
| 317 | * The complexity constant C. (default 1)</pre> |
---|
| 318 | * |
---|
| 319 | * <pre> -N |
---|
| 320 | * Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre> |
---|
| 321 | * |
---|
| 322 | * <pre> -L <double> |
---|
| 323 | * The tolerance parameter. (default 1.0e-3)</pre> |
---|
| 324 | * |
---|
| 325 | * <pre> -P <double> |
---|
| 326 | * The epsilon for round-off error. (default 1.0e-12)</pre> |
---|
| 327 | * |
---|
| 328 | * <pre> -M |
---|
| 329 | * Fit logistic models to SVM outputs. </pre> |
---|
| 330 | * |
---|
| 331 | * <pre> -V <double> |
---|
| 332 | * The number of folds for the internal |
---|
| 333 | * cross-validation. (default -1, use training data)</pre> |
---|
| 334 | * |
---|
| 335 | * <pre> -W <double> |
---|
| 336 | * The random number seed. (default 1)</pre> |
---|
| 337 | * |
---|
| 338 | * <pre> -K <classname and parameters> |
---|
| 339 | * The Kernel to use. |
---|
| 340 | * (default: weka.classifiers.functions.supportVector.PolyKernel)</pre> |
---|
| 341 | * |
---|
| 342 | * <pre> |
---|
| 343 | * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: |
---|
| 344 | * </pre> |
---|
| 345 | * |
---|
| 346 | * <pre> -D |
---|
| 347 | * Enables debugging output (if available) to be printed. |
---|
| 348 | * (default: off)</pre> |
---|
| 349 | * |
---|
| 350 | * <pre> -no-checks |
---|
| 351 | * Turns off all checks - use with caution! |
---|
| 352 | * (default: checks on)</pre> |
---|
| 353 | * |
---|
| 354 | * <pre> -C <num> |
---|
| 355 | * The size of the cache (a prime number), 0 for full cache and |
---|
| 356 | * -1 to turn it off. |
---|
| 357 | * (default: 250007)</pre> |
---|
| 358 | * |
---|
| 359 | * <pre> -E <num> |
---|
| 360 | * The Exponent to use. |
---|
| 361 | * (default: 1.0)</pre> |
---|
| 362 | * |
---|
| 363 | * <pre> -L |
---|
| 364 | * Use lower-order terms. |
---|
| 365 | * (default: no)</pre> |
---|
| 366 | * |
---|
| 367 | <!-- options-end --> |
---|
| 368 | * |
---|
| 369 | * Options after -- are passed to the designated classifier.<p> |
---|
| 370 | * |
---|
| 371 | * @param options the list of options as an array of strings |
---|
| 372 | * @throws Exception if an option is not supported |
---|
| 373 | */ |
---|
| 374 | public void setOptions(String[] options) throws Exception { |
---|
| 375 | String tmpStr; |
---|
| 376 | |
---|
| 377 | tmpStr = Utils.getOption('F', options); |
---|
| 378 | if (tmpStr.length() != 0) |
---|
| 379 | setNumFolds(Integer.parseInt(tmpStr)); |
---|
| 380 | else |
---|
| 381 | setNumFolds(10); |
---|
| 382 | |
---|
| 383 | setVerbose(Utils.getFlag("verbose", options)); |
---|
| 384 | |
---|
| 385 | super.setOptions(options); |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | /** |
---|
| 389 | * Gets the current settings of the Classifier. |
---|
| 390 | * |
---|
| 391 | * @return an array of strings suitable for passing to setOptions |
---|
| 392 | */ |
---|
| 393 | public String[] getOptions() { |
---|
| 394 | Vector result; |
---|
| 395 | String[] options; |
---|
| 396 | int i; |
---|
| 397 | |
---|
| 398 | result = new Vector(); |
---|
| 399 | |
---|
| 400 | result.add("-F"); |
---|
| 401 | result.add("" + getNumFolds()); |
---|
| 402 | |
---|
| 403 | if (getVerbose()) |
---|
| 404 | result.add("-verbose"); |
---|
| 405 | |
---|
| 406 | options = super.getOptions(); |
---|
| 407 | for (i = 0; i < options.length; i++) |
---|
| 408 | result.add(options[i]); |
---|
| 409 | |
---|
| 410 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | /** |
---|
| 414 | * Gets the number of folds to use for splitting the training set. |
---|
| 415 | * |
---|
| 416 | * @return the number of folds |
---|
| 417 | */ |
---|
| 418 | public int getNumFolds() { |
---|
| 419 | return m_NumFolds; |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | /** |
---|
| 423 | * Sets the number of folds to use for splitting the training set. |
---|
| 424 | * |
---|
| 425 | * @param value the new number of folds |
---|
| 426 | */ |
---|
| 427 | public void setNumFolds(int value) { |
---|
| 428 | if (value > 0) |
---|
| 429 | m_NumFolds = value; |
---|
| 430 | else |
---|
| 431 | System.out.println( |
---|
| 432 | "At least 1 fold is necessary (provided: " + value + ")!"); |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** |
---|
| 436 | * Returns the tip text for this property |
---|
| 437 | * |
---|
| 438 | * @return tip text for this property suitable for |
---|
| 439 | * displaying in the explorer/experimenter gui |
---|
| 440 | */ |
---|
| 441 | public String numFoldsTipText() { |
---|
| 442 | return "The number of folds to use for splitting the training set into smaller chunks for the base classifier."; |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | /** |
---|
| 446 | * Set the verbose state. |
---|
| 447 | * |
---|
| 448 | * @param value the verbose state |
---|
| 449 | */ |
---|
| 450 | public void setVerbose(boolean value) { |
---|
| 451 | m_Verbose = value; |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | /** |
---|
| 455 | * Gets the verbose state |
---|
| 456 | * |
---|
| 457 | * @return the verbose state |
---|
| 458 | */ |
---|
| 459 | public boolean getVerbose() { |
---|
| 460 | return m_Verbose; |
---|
| 461 | } |
---|
| 462 | |
---|
| 463 | /** |
---|
| 464 | * Returns the tip text for this property |
---|
| 465 | * @return tip text for this property suitable for |
---|
| 466 | * displaying in the explorer/experimenter gui |
---|
| 467 | */ |
---|
| 468 | public String verboseTipText() { |
---|
| 469 | return "Whether to ouput some additional information during building."; |
---|
| 470 | } |
---|
| 471 | |
---|
| 472 | /** |
---|
| 473 | * Bagging method. |
---|
| 474 | * |
---|
| 475 | * @param data the training data to be used for generating the |
---|
| 476 | * bagged classifier. |
---|
| 477 | * @throws Exception if the classifier could not be built successfully |
---|
| 478 | */ |
---|
| 479 | public void buildClassifier(Instances data) throws Exception { |
---|
| 480 | Classifier[] base; |
---|
| 481 | int i; |
---|
| 482 | int n; |
---|
| 483 | int fromIndex; |
---|
| 484 | int toIndex; |
---|
| 485 | Instances train; |
---|
| 486 | double chunkSize; |
---|
| 487 | |
---|
| 488 | // can classifier handle the data? |
---|
| 489 | getCapabilities().testWithFail(data); |
---|
| 490 | |
---|
| 491 | // remove instances with missing class |
---|
| 492 | data = new Instances(data); |
---|
| 493 | data.deleteWithMissingClass(); |
---|
| 494 | |
---|
| 495 | m_Vote = new Vote(); |
---|
| 496 | base = new Classifier[getNumFolds()]; |
---|
| 497 | chunkSize = (double) data.numInstances() / (double) getNumFolds(); |
---|
| 498 | |
---|
| 499 | // stratify data |
---|
| 500 | if (getNumFolds() > 1) { |
---|
| 501 | data.randomize(data.getRandomNumberGenerator(getSeed())); |
---|
| 502 | data.stratify(getNumFolds()); |
---|
| 503 | } |
---|
| 504 | |
---|
| 505 | // generate <folds> classifiers |
---|
| 506 | for (i = 0; i < getNumFolds(); i++) { |
---|
| 507 | base[i] = makeCopy(getClassifier()); |
---|
| 508 | |
---|
| 509 | // generate training data |
---|
| 510 | if (getNumFolds() > 1) { |
---|
| 511 | // some progress information |
---|
| 512 | if (getVerbose()) |
---|
| 513 | System.out.print("."); |
---|
| 514 | |
---|
| 515 | train = data.testCV(getNumFolds(), i); |
---|
| 516 | } |
---|
| 517 | else { |
---|
| 518 | train = data; |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | // train classifier |
---|
| 522 | base[i].buildClassifier(train); |
---|
| 523 | } |
---|
| 524 | |
---|
| 525 | // init vote |
---|
| 526 | m_Vote.setClassifiers(base); |
---|
| 527 | |
---|
| 528 | if (getVerbose()) |
---|
| 529 | System.out.println(); |
---|
| 530 | } |
---|
| 531 | |
---|
| 532 | /** |
---|
| 533 | * Calculates the class membership probabilities for the given test |
---|
| 534 | * instance. |
---|
| 535 | * |
---|
| 536 | * @param instance the instance to be classified |
---|
| 537 | * @return preedicted class probability distribution |
---|
| 538 | * @throws Exception if distribution can't be computed successfully |
---|
| 539 | */ |
---|
| 540 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 541 | return m_Vote.distributionForInstance(instance); |
---|
| 542 | } |
---|
| 543 | |
---|
| 544 | /** |
---|
| 545 | * Returns description of the classifier. |
---|
| 546 | * |
---|
| 547 | * @return description of the classifier as a string |
---|
| 548 | */ |
---|
| 549 | public String toString() { |
---|
| 550 | if (m_Vote == null) |
---|
| 551 | return this.getClass().getName().replaceAll(".*\\.", "") |
---|
| 552 | + ": No model built yet."; |
---|
| 553 | else |
---|
| 554 | return m_Vote.toString(); |
---|
| 555 | } |
---|
| 556 | |
---|
| 557 | /** |
---|
| 558 | * Returns the revision string. |
---|
| 559 | * |
---|
| 560 | * @return the revision |
---|
| 561 | */ |
---|
| 562 | public String getRevision() { |
---|
| 563 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | /** |
---|
| 567 | * Main method for testing this class. |
---|
| 568 | * |
---|
| 569 | * @param args the options |
---|
| 570 | */ |
---|
| 571 | public static void main(String[] args) { |
---|
| 572 | runClassifier(new Dagging(), args); |
---|
| 573 | } |
---|
| 574 | } |
---|