1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CostSensitiveClassifier.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.CostMatrix; |
---|
28 | import weka.classifiers.RandomizableSingleClassifierEnhancer; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Drawable; |
---|
31 | import weka.core.Instance; |
---|
32 | import weka.core.Instances; |
---|
33 | import weka.core.Option; |
---|
34 | import weka.core.OptionHandler; |
---|
35 | import weka.core.RevisionUtils; |
---|
36 | import weka.core.SelectedTag; |
---|
37 | import weka.core.Tag; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.WeightedInstancesHandler; |
---|
40 | import weka.core.Capabilities.Capability; |
---|
41 | |
---|
42 | import java.io.BufferedReader; |
---|
43 | import java.io.File; |
---|
44 | import java.io.FileReader; |
---|
45 | import java.io.StringReader; |
---|
46 | import java.io.StringWriter; |
---|
47 | import java.util.Enumeration; |
---|
48 | import java.util.Random; |
---|
49 | import java.util.Vector; |
---|
50 | |
---|
51 | /** |
---|
52 | <!-- globalinfo-start --> |
---|
53 | * A metaclassifier that makes its base classifier cost-sensitive. Two methods can be used to introduce cost-sensitivity: reweighting training instances according to the total cost assigned to each class; or predicting the class with minimum expected misclassification cost (rather than the most likely class). Performance can often be improved by using a Bagged classifier to improve the probability estimates of the base classifier. |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- options-start --> |
---|
58 | * Valid options are: <p/> |
---|
59 | * |
---|
60 | * <pre> -M |
---|
61 | * Minimize expected misclassification cost. Default is to |
---|
62 | * reweight training instances according to costs per class</pre> |
---|
63 | * |
---|
64 | * <pre> -C <cost file name> |
---|
65 | * File name of a cost matrix to use. If this is not supplied, |
---|
66 | * a cost matrix will be loaded on demand. The name of the |
---|
67 | * on-demand file is the relation name of the training data |
---|
68 | * plus ".cost", and the path to the on-demand file is |
---|
69 | * specified with the -N option.</pre> |
---|
70 | * |
---|
71 | * <pre> -N <directory> |
---|
72 | * Name of a directory to search for cost files when loading |
---|
73 | * costs on demand (default current directory).</pre> |
---|
74 | * |
---|
75 | * <pre> -cost-matrix <matrix> |
---|
76 | * The cost matrix in Matlab single line format.</pre> |
---|
77 | * |
---|
78 | * <pre> -S <num> |
---|
79 | * Random number seed. |
---|
80 | * (default 1)</pre> |
---|
81 | * |
---|
82 | * <pre> -D |
---|
83 | * If set, classifier is run in debug mode and |
---|
84 | * may output additional info to the console</pre> |
---|
85 | * |
---|
86 | * <pre> -W |
---|
87 | * Full name of base classifier. |
---|
88 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
89 | * |
---|
90 | * <pre> |
---|
91 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
92 | * </pre> |
---|
93 | * |
---|
94 | * <pre> -D |
---|
95 | * If set, classifier is run in debug mode and |
---|
96 | * may output additional info to the console</pre> |
---|
97 | * |
---|
98 | <!-- options-end --> |
---|
99 | * |
---|
100 | * Options after -- are passed to the designated classifier.<p> |
---|
101 | * |
---|
102 | * @author Len Trigg (len@reeltwo.com) |
---|
103 | * @version $Revision: 5928 $ |
---|
104 | */ |
---|
105 | public class CostSensitiveClassifier |
---|
106 | extends RandomizableSingleClassifierEnhancer |
---|
107 | implements OptionHandler, Drawable { |
---|
108 | |
---|
109 | /** for serialization */ |
---|
110 | static final long serialVersionUID = -720658209263002404L; |
---|
111 | |
---|
112 | /** load cost matrix on demand */ |
---|
113 | public static final int MATRIX_ON_DEMAND = 1; |
---|
114 | /** use explicit cost matrix */ |
---|
115 | public static final int MATRIX_SUPPLIED = 2; |
---|
116 | /** Specify possible sources of the cost matrix */ |
---|
117 | public static final Tag [] TAGS_MATRIX_SOURCE = { |
---|
118 | new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"), |
---|
119 | new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix") |
---|
120 | }; |
---|
121 | |
---|
122 | /** Indicates the current cost matrix source */ |
---|
123 | protected int m_MatrixSource = MATRIX_ON_DEMAND; |
---|
124 | |
---|
125 | /** |
---|
126 | * The directory used when loading cost files on demand, null indicates |
---|
127 | * current directory |
---|
128 | */ |
---|
129 | protected File m_OnDemandDirectory = new File(System.getProperty("user.dir")); |
---|
130 | |
---|
131 | /** The name of the cost file, for command line options */ |
---|
132 | protected String m_CostFile; |
---|
133 | |
---|
134 | /** The cost matrix */ |
---|
135 | protected CostMatrix m_CostMatrix = new CostMatrix(1); |
---|
136 | |
---|
137 | /** |
---|
138 | * True if the costs should be used by selecting the minimum expected |
---|
139 | * cost (false means weight training data by the costs) |
---|
140 | */ |
---|
141 | protected boolean m_MinimizeExpectedCost; |
---|
142 | |
---|
143 | /** |
---|
144 | * String describing default classifier. |
---|
145 | * |
---|
146 | * @return the default classifier classname |
---|
147 | */ |
---|
148 | protected String defaultClassifierString() { |
---|
149 | |
---|
150 | return "weka.classifiers.rules.ZeroR"; |
---|
151 | } |
---|
152 | |
---|
153 | /** |
---|
154 | * Default constructor. |
---|
155 | */ |
---|
156 | public CostSensitiveClassifier() { |
---|
157 | m_Classifier = new weka.classifiers.rules.ZeroR(); |
---|
158 | } |
---|
159 | |
---|
160 | /** |
---|
161 | * Returns an enumeration describing the available options. |
---|
162 | * |
---|
163 | * @return an enumeration of all the available options. |
---|
164 | */ |
---|
165 | public Enumeration listOptions() { |
---|
166 | |
---|
167 | Vector newVector = new Vector(5); |
---|
168 | |
---|
169 | newVector.addElement(new Option( |
---|
170 | "\tMinimize expected misclassification cost. Default is to\n" |
---|
171 | +"\treweight training instances according to costs per class", |
---|
172 | "M", 0, "-M")); |
---|
173 | newVector.addElement(new Option( |
---|
174 | "\tFile name of a cost matrix to use. If this is not supplied,\n" |
---|
175 | +"\ta cost matrix will be loaded on demand. The name of the\n" |
---|
176 | +"\ton-demand file is the relation name of the training data\n" |
---|
177 | +"\tplus \".cost\", and the path to the on-demand file is\n" |
---|
178 | +"\tspecified with the -N option.", |
---|
179 | "C", 1, "-C <cost file name>")); |
---|
180 | newVector.addElement(new Option( |
---|
181 | "\tName of a directory to search for cost files when loading\n" |
---|
182 | +"\tcosts on demand (default current directory).", |
---|
183 | "N", 1, "-N <directory>")); |
---|
184 | newVector.addElement(new Option( |
---|
185 | "\tThe cost matrix in Matlab single line format.", |
---|
186 | "cost-matrix", 1, "-cost-matrix <matrix>")); |
---|
187 | |
---|
188 | Enumeration enu = super.listOptions(); |
---|
189 | while (enu.hasMoreElements()) { |
---|
190 | newVector.addElement(enu.nextElement()); |
---|
191 | } |
---|
192 | |
---|
193 | return newVector.elements(); |
---|
194 | } |
---|
195 | |
---|
196 | /** |
---|
197 | * Parses a given list of options. <p/> |
---|
198 | * |
---|
199 | <!-- options-start --> |
---|
200 | * Valid options are: <p/> |
---|
201 | * |
---|
202 | * <pre> -M |
---|
203 | * Minimize expected misclassification cost. Default is to |
---|
204 | * reweight training instances according to costs per class</pre> |
---|
205 | * |
---|
206 | * <pre> -C <cost file name> |
---|
207 | * File name of a cost matrix to use. If this is not supplied, |
---|
208 | * a cost matrix will be loaded on demand. The name of the |
---|
209 | * on-demand file is the relation name of the training data |
---|
210 | * plus ".cost", and the path to the on-demand file is |
---|
211 | * specified with the -N option.</pre> |
---|
212 | * |
---|
213 | * <pre> -N <directory> |
---|
214 | * Name of a directory to search for cost files when loading |
---|
215 | * costs on demand (default current directory).</pre> |
---|
216 | * |
---|
217 | * <pre> -cost-matrix <matrix> |
---|
218 | * The cost matrix in Matlab single line format.</pre> |
---|
219 | * |
---|
220 | * <pre> -S <num> |
---|
221 | * Random number seed. |
---|
222 | * (default 1)</pre> |
---|
223 | * |
---|
224 | * <pre> -D |
---|
225 | * If set, classifier is run in debug mode and |
---|
226 | * may output additional info to the console</pre> |
---|
227 | * |
---|
228 | * <pre> -W |
---|
229 | * Full name of base classifier. |
---|
230 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
231 | * |
---|
232 | * <pre> |
---|
233 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
234 | * </pre> |
---|
235 | * |
---|
236 | * <pre> -D |
---|
237 | * If set, classifier is run in debug mode and |
---|
238 | * may output additional info to the console</pre> |
---|
239 | * |
---|
240 | <!-- options-end --> |
---|
241 | * |
---|
242 | * Options after -- are passed to the designated classifier.<p> |
---|
243 | * |
---|
244 | * @param options the list of options as an array of strings |
---|
245 | * @throws Exception if an option is not supported |
---|
246 | */ |
---|
247 | public void setOptions(String[] options) throws Exception { |
---|
248 | |
---|
249 | setMinimizeExpectedCost(Utils.getFlag('M', options)); |
---|
250 | |
---|
251 | String costFile = Utils.getOption('C', options); |
---|
252 | if (costFile.length() != 0) { |
---|
253 | try { |
---|
254 | setCostMatrix(new CostMatrix(new BufferedReader( |
---|
255 | new FileReader(costFile)))); |
---|
256 | } catch (Exception ex) { |
---|
257 | // now flag as possible old format cost matrix. Delay cost matrix |
---|
258 | // loading until buildClassifer is called |
---|
259 | setCostMatrix(null); |
---|
260 | } |
---|
261 | setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED, |
---|
262 | TAGS_MATRIX_SOURCE)); |
---|
263 | m_CostFile = costFile; |
---|
264 | } else { |
---|
265 | setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND, |
---|
266 | TAGS_MATRIX_SOURCE)); |
---|
267 | } |
---|
268 | |
---|
269 | String demandDir = Utils.getOption('N', options); |
---|
270 | if (demandDir.length() != 0) { |
---|
271 | setOnDemandDirectory(new File(demandDir)); |
---|
272 | } |
---|
273 | |
---|
274 | String cost_matrix = Utils.getOption("cost-matrix", options); |
---|
275 | if (cost_matrix.length() != 0) { |
---|
276 | StringWriter writer = new StringWriter(); |
---|
277 | CostMatrix.parseMatlab(cost_matrix).write(writer); |
---|
278 | setCostMatrix(new CostMatrix(new StringReader(writer.toString()))); |
---|
279 | setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED, |
---|
280 | TAGS_MATRIX_SOURCE)); |
---|
281 | } |
---|
282 | |
---|
283 | super.setOptions(options); |
---|
284 | } |
---|
285 | |
---|
286 | |
---|
287 | /** |
---|
288 | * Gets the current settings of the Classifier. |
---|
289 | * |
---|
290 | * @return an array of strings suitable for passing to setOptions |
---|
291 | */ |
---|
292 | public String [] getOptions() { |
---|
293 | String [] superOptions = super.getOptions(); |
---|
294 | String [] options = new String [superOptions.length + 7]; |
---|
295 | |
---|
296 | int current = 0; |
---|
297 | |
---|
298 | if (m_MatrixSource == MATRIX_SUPPLIED) { |
---|
299 | if (m_CostFile != null) { |
---|
300 | options[current++] = "-C"; |
---|
301 | options[current++] = "" + m_CostFile; |
---|
302 | } |
---|
303 | else { |
---|
304 | options[current++] = "-cost-matrix"; |
---|
305 | options[current++] = getCostMatrix().toMatlab(); |
---|
306 | } |
---|
307 | } else { |
---|
308 | options[current++] = "-N"; |
---|
309 | options[current++] = "" + getOnDemandDirectory(); |
---|
310 | } |
---|
311 | |
---|
312 | if (getMinimizeExpectedCost()) { |
---|
313 | options[current++] = "-M"; |
---|
314 | } |
---|
315 | |
---|
316 | System.arraycopy(superOptions, 0, options, current, |
---|
317 | superOptions.length); |
---|
318 | |
---|
319 | while (current < options.length) { |
---|
320 | if (options[current] == null) { |
---|
321 | options[current] = ""; |
---|
322 | } |
---|
323 | current++; |
---|
324 | } |
---|
325 | |
---|
326 | return options; |
---|
327 | } |
---|
328 | |
---|
329 | /** |
---|
330 | * @return a description of the classifier suitable for |
---|
331 | * displaying in the explorer/experimenter gui |
---|
332 | */ |
---|
333 | public String globalInfo() { |
---|
334 | |
---|
335 | return "A metaclassifier that makes its base classifier cost-sensitive. " |
---|
336 | + "Two methods can be used to introduce cost-sensitivity: reweighting " |
---|
337 | + "training instances according to the total cost assigned to each " |
---|
338 | + "class; or predicting the class with minimum expected " |
---|
339 | + "misclassification cost (rather than the most likely class). " |
---|
340 | + "Performance can often be " |
---|
341 | + "improved by using a Bagged classifier to improve the probability " |
---|
342 | + "estimates of the base classifier."; |
---|
343 | } |
---|
344 | |
---|
345 | /** |
---|
346 | * @return tip text for this property suitable for |
---|
347 | * displaying in the explorer/experimenter gui |
---|
348 | */ |
---|
349 | public String costMatrixSourceTipText() { |
---|
350 | |
---|
351 | return "Sets where to get the cost matrix. The two options are" |
---|
352 | + "to use the supplied explicit cost matrix (the setting of the " |
---|
353 | + "costMatrix property), or to load a cost matrix from a file when " |
---|
354 | + "required (this file will be loaded from the directory set by the " |
---|
355 | + "onDemandDirectory property and will be named relation_name" |
---|
356 | + CostMatrix.FILE_EXTENSION + ")."; |
---|
357 | } |
---|
358 | |
---|
359 | /** |
---|
360 | * Gets the source location method of the cost matrix. Will be one of |
---|
361 | * MATRIX_ON_DEMAND or MATRIX_SUPPLIED. |
---|
362 | * |
---|
363 | * @return the cost matrix source. |
---|
364 | */ |
---|
365 | public SelectedTag getCostMatrixSource() { |
---|
366 | |
---|
367 | return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE); |
---|
368 | } |
---|
369 | |
---|
370 | /** |
---|
371 | * Sets the source location of the cost matrix. Values other than |
---|
372 | * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored. |
---|
373 | * |
---|
374 | * @param newMethod the cost matrix location method. |
---|
375 | */ |
---|
376 | public void setCostMatrixSource(SelectedTag newMethod) { |
---|
377 | |
---|
378 | if (newMethod.getTags() == TAGS_MATRIX_SOURCE) { |
---|
379 | m_MatrixSource = newMethod.getSelectedTag().getID(); |
---|
380 | } |
---|
381 | } |
---|
382 | |
---|
383 | /** |
---|
384 | * @return tip text for this property suitable for |
---|
385 | * displaying in the explorer/experimenter gui |
---|
386 | */ |
---|
387 | public String onDemandDirectoryTipText() { |
---|
388 | |
---|
389 | return "Sets the directory where cost files are loaded from. This option " |
---|
390 | + "is used when the costMatrixSource is set to \"On Demand\"."; |
---|
391 | } |
---|
392 | |
---|
393 | /** |
---|
394 | * Returns the directory that will be searched for cost files when |
---|
395 | * loading on demand. |
---|
396 | * |
---|
397 | * @return The cost file search directory. |
---|
398 | */ |
---|
399 | public File getOnDemandDirectory() { |
---|
400 | |
---|
401 | return m_OnDemandDirectory; |
---|
402 | } |
---|
403 | |
---|
404 | /** |
---|
405 | * Sets the directory that will be searched for cost files when |
---|
406 | * loading on demand. |
---|
407 | * |
---|
408 | * @param newDir The cost file search directory. |
---|
409 | */ |
---|
410 | public void setOnDemandDirectory(File newDir) { |
---|
411 | |
---|
412 | if (newDir.isDirectory()) { |
---|
413 | m_OnDemandDirectory = newDir; |
---|
414 | } else { |
---|
415 | m_OnDemandDirectory = new File(newDir.getParent()); |
---|
416 | } |
---|
417 | m_MatrixSource = MATRIX_ON_DEMAND; |
---|
418 | } |
---|
419 | |
---|
420 | /** |
---|
421 | * @return tip text for this property suitable for |
---|
422 | * displaying in the explorer/experimenter gui |
---|
423 | */ |
---|
424 | public String minimizeExpectedCostTipText() { |
---|
425 | |
---|
426 | return "Sets whether the minimum expected cost criteria will be used. If " |
---|
427 | + "this is false, the training data will be reweighted according to the " |
---|
428 | + "costs assigned to each class. If true, the minimum expected cost " |
---|
429 | + "criteria will be used."; |
---|
430 | } |
---|
431 | |
---|
432 | /** |
---|
433 | * Gets the value of MinimizeExpectedCost. |
---|
434 | * |
---|
435 | * @return Value of MinimizeExpectedCost. |
---|
436 | */ |
---|
437 | public boolean getMinimizeExpectedCost() { |
---|
438 | |
---|
439 | return m_MinimizeExpectedCost; |
---|
440 | } |
---|
441 | |
---|
442 | /** |
---|
443 | * Set the value of MinimizeExpectedCost. |
---|
444 | * |
---|
445 | * @param newMinimizeExpectedCost Value to assign to MinimizeExpectedCost. |
---|
446 | */ |
---|
447 | public void setMinimizeExpectedCost(boolean newMinimizeExpectedCost) { |
---|
448 | |
---|
449 | m_MinimizeExpectedCost = newMinimizeExpectedCost; |
---|
450 | } |
---|
451 | |
---|
452 | /** |
---|
453 | * Gets the classifier specification string, which contains the class name of |
---|
454 | * the classifier and any options to the classifier |
---|
455 | * |
---|
456 | * @return the classifier string. |
---|
457 | */ |
---|
458 | protected String getClassifierSpec() { |
---|
459 | |
---|
460 | Classifier c = getClassifier(); |
---|
461 | if (c instanceof OptionHandler) { |
---|
462 | return c.getClass().getName() + " " |
---|
463 | + Utils.joinOptions(((OptionHandler)c).getOptions()); |
---|
464 | } |
---|
465 | return c.getClass().getName(); |
---|
466 | } |
---|
467 | |
---|
468 | /** |
---|
469 | * @return tip text for this property suitable for |
---|
470 | * displaying in the explorer/experimenter gui |
---|
471 | */ |
---|
472 | public String costMatrixTipText() { |
---|
473 | return "Sets the cost matrix explicitly. This matrix is used if the " |
---|
474 | + "costMatrixSource property is set to \"Supplied\"."; |
---|
475 | } |
---|
476 | |
---|
477 | /** |
---|
478 | * Gets the misclassification cost matrix. |
---|
479 | * |
---|
480 | * @return the cost matrix |
---|
481 | */ |
---|
482 | public CostMatrix getCostMatrix() { |
---|
483 | |
---|
484 | return m_CostMatrix; |
---|
485 | } |
---|
486 | |
---|
487 | /** |
---|
488 | * Sets the misclassification cost matrix. |
---|
489 | * |
---|
490 | * @param newCostMatrix the cost matrix |
---|
491 | */ |
---|
492 | public void setCostMatrix(CostMatrix newCostMatrix) { |
---|
493 | |
---|
494 | m_CostMatrix = newCostMatrix; |
---|
495 | m_MatrixSource = MATRIX_SUPPLIED; |
---|
496 | } |
---|
497 | |
---|
498 | /** |
---|
499 | * Returns default capabilities of the classifier. |
---|
500 | * |
---|
501 | * @return the capabilities of this classifier |
---|
502 | */ |
---|
503 | public Capabilities getCapabilities() { |
---|
504 | Capabilities result = super.getCapabilities(); |
---|
505 | |
---|
506 | // class |
---|
507 | result.disableAllClasses(); |
---|
508 | result.disableAllClassDependencies(); |
---|
509 | result.enable(Capability.NOMINAL_CLASS); |
---|
510 | |
---|
511 | return result; |
---|
512 | } |
---|
513 | |
---|
514 | /** |
---|
515 | * Builds the model of the base learner. |
---|
516 | * |
---|
517 | * @param data the training data |
---|
518 | * @throws Exception if the classifier could not be built successfully |
---|
519 | */ |
---|
520 | public void buildClassifier(Instances data) throws Exception { |
---|
521 | |
---|
522 | // can classifier handle the data? |
---|
523 | getCapabilities().testWithFail(data); |
---|
524 | |
---|
525 | // remove instances with missing class |
---|
526 | data = new Instances(data); |
---|
527 | data.deleteWithMissingClass(); |
---|
528 | |
---|
529 | if (m_Classifier == null) { |
---|
530 | throw new Exception("No base classifier has been set!"); |
---|
531 | } |
---|
532 | if (m_MatrixSource == MATRIX_ON_DEMAND) { |
---|
533 | String costName = data.relationName() + CostMatrix.FILE_EXTENSION; |
---|
534 | File costFile = new File(getOnDemandDirectory(), costName); |
---|
535 | if (!costFile.exists()) { |
---|
536 | throw new Exception("On-demand cost file doesn't exist: " + costFile); |
---|
537 | } |
---|
538 | setCostMatrix(new CostMatrix(new BufferedReader( |
---|
539 | new FileReader(costFile)))); |
---|
540 | } else if (m_CostMatrix == null) { |
---|
541 | // try loading an old format cost file |
---|
542 | m_CostMatrix = new CostMatrix(data.numClasses()); |
---|
543 | m_CostMatrix.readOldFormat(new BufferedReader( |
---|
544 | new FileReader(m_CostFile))); |
---|
545 | } |
---|
546 | |
---|
547 | if (!m_MinimizeExpectedCost) { |
---|
548 | Random random = null; |
---|
549 | if (!(m_Classifier instanceof WeightedInstancesHandler)) { |
---|
550 | random = new Random(m_Seed); |
---|
551 | } |
---|
552 | data = m_CostMatrix.applyCostMatrix(data, random); |
---|
553 | } |
---|
554 | m_Classifier.buildClassifier(data); |
---|
555 | } |
---|
556 | |
---|
557 | /** |
---|
558 | * Returns class probabilities. When minimum expected cost approach is chosen, |
---|
559 | * returns probability one for class with the minimum expected misclassification |
---|
560 | * cost. Otherwise it returns the probability distribution returned by |
---|
561 | * the base classifier. |
---|
562 | * |
---|
563 | * @param instance the instance to be classified |
---|
564 | * @return the computed distribution for the given instance |
---|
565 | * @throws Exception if instance could not be classified |
---|
566 | * successfully */ |
---|
567 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
568 | |
---|
569 | if (!m_MinimizeExpectedCost) { |
---|
570 | return m_Classifier.distributionForInstance(instance); |
---|
571 | } |
---|
572 | double [] pred = m_Classifier.distributionForInstance(instance); |
---|
573 | double [] costs = m_CostMatrix.expectedCosts(pred, instance); |
---|
574 | /* |
---|
575 | for (int i = 0; i < pred.length; i++) { |
---|
576 | System.out.print(pred[i] + " "); |
---|
577 | } |
---|
578 | System.out.println(); |
---|
579 | for (int i = 0; i < costs.length; i++) { |
---|
580 | System.out.print(costs[i] + " "); |
---|
581 | } |
---|
582 | System.out.println("\n"); |
---|
583 | */ |
---|
584 | |
---|
585 | // This is probably not ideal |
---|
586 | int classIndex = Utils.minIndex(costs); |
---|
587 | for (int i = 0; i < pred.length; i++) { |
---|
588 | if (i == classIndex) { |
---|
589 | pred[i] = 1.0; |
---|
590 | } else { |
---|
591 | pred[i] = 0.0; |
---|
592 | } |
---|
593 | } |
---|
594 | return pred; |
---|
595 | } |
---|
596 | |
---|
597 | /** |
---|
598 | * Returns the type of graph this classifier |
---|
599 | * represents. |
---|
600 | * |
---|
601 | * @return the type of graph this classifier represents |
---|
602 | */ |
---|
603 | public int graphType() { |
---|
604 | |
---|
605 | if (m_Classifier instanceof Drawable) |
---|
606 | return ((Drawable)m_Classifier).graphType(); |
---|
607 | else |
---|
608 | return Drawable.NOT_DRAWABLE; |
---|
609 | } |
---|
610 | |
---|
611 | /** |
---|
612 | * Returns graph describing the classifier (if possible). |
---|
613 | * |
---|
614 | * @return the graph of the classifier in dotty format |
---|
615 | * @throws Exception if the classifier cannot be graphed |
---|
616 | */ |
---|
617 | public String graph() throws Exception { |
---|
618 | |
---|
619 | if (m_Classifier instanceof Drawable) |
---|
620 | return ((Drawable)m_Classifier).graph(); |
---|
621 | else throw new Exception("Classifier: " + getClassifierSpec() |
---|
622 | + " cannot be graphed"); |
---|
623 | } |
---|
624 | |
---|
625 | /** |
---|
626 | * Output a representation of this classifier |
---|
627 | * |
---|
628 | * @return a string representation of the classifier |
---|
629 | */ |
---|
630 | public String toString() { |
---|
631 | |
---|
632 | if (m_Classifier == null) { |
---|
633 | return "CostSensitiveClassifier: No model built yet."; |
---|
634 | } |
---|
635 | |
---|
636 | String result = "CostSensitiveClassifier using "; |
---|
637 | if (m_MinimizeExpectedCost) { |
---|
638 | result += "minimized expected misclasification cost\n"; |
---|
639 | } else { |
---|
640 | result += "reweighted training instances\n"; |
---|
641 | } |
---|
642 | result += "\n" + getClassifierSpec() |
---|
643 | + "\n\nClassifier Model\n" |
---|
644 | + m_Classifier.toString() |
---|
645 | + "\n\nCost Matrix\n" |
---|
646 | + m_CostMatrix.toString(); |
---|
647 | |
---|
648 | return result; |
---|
649 | } |
---|
650 | |
---|
651 | /** |
---|
652 | * Returns the revision string. |
---|
653 | * |
---|
654 | * @return the revision |
---|
655 | */ |
---|
656 | public String getRevision() { |
---|
657 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
658 | } |
---|
659 | |
---|
660 | /** |
---|
661 | * Main method for testing this class. |
---|
662 | * |
---|
663 | * @param argv should contain the following arguments: |
---|
664 | * -t training file [-T test file] [-c class index] |
---|
665 | */ |
---|
666 | public static void main(String [] argv) { |
---|
667 | runClassifier(new CostSensitiveClassifier(), argv); |
---|
668 | } |
---|
669 | } |
---|