/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ClassificationViaRegression.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.meta;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.SingleClassifierEnhancer;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MakeIndicator;
/**
* Class for doing classification using regression methods. Class is binarized and one regression model is built for each class value. For more information, see, for example
*
* E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten (1998). Using model trees for classification. Machine Learning. 32(1):63-76.
*
* @article{Frank1998, * author = {E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten}, * journal = {Machine Learning}, * number = {1}, * pages = {63-76}, * title = {Using model trees for classification}, * volume = {32}, * year = {1998} * } ** * * Valid options are: * *
-D * If set, classifier is run in debug mode and * may output additional info to the console* *
-W * Full name of base classifier. * (default: weka.classifiers.trees.M5P)* *
* Options specific to classifier weka.classifiers.trees.M5P: ** *
-N * Use unpruned tree/rules* *
-U * Use unsmoothed predictions* *
-R * Build regression tree/rule rather than a model tree/rule* *
-M <minimum number of instances> * Set minimum number of instances per leaf * (default 4)* *
-L * Save instances at the nodes in * the tree (for visualization purposes)* * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class ClassificationViaRegression extends SingleClassifierEnhancer implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 4500023123618669859L; /** The classifiers. (One for each class.) */ private Classifier[] m_Classifiers; /** The filters used to transform the class. */ private MakeIndicator[] m_ClassFilters; /** * Default constructor. */ public ClassificationViaRegression() { m_Classifier = new weka.classifiers.trees.M5P(); } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for doing classification using regression methods. Class is " + "binarized and one regression model is built for each class value. For more " + "information, see, for example\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Using model trees for classification"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "32"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "63-76"); return result; } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.M5P"; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); result.enable(Capability.NOMINAL_CLASS); return result; } /** * Builds the classifiers. * * @param insts the training data. * @throws Exception if a classifier can't be built */ public void buildClassifier(Instances insts) throws Exception { Instances newInsts; // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, insts.numClasses()); m_ClassFilters = new MakeIndicator[insts.numClasses()]; for (int i = 0; i < insts.numClasses(); i++) { m_ClassFilters[i] = new MakeIndicator(); m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); m_ClassFilters[i].setValueIndex(i); m_ClassFilters[i].setNumeric(true); m_ClassFilters[i].setInputFormat(insts); newInsts = Filter.useFilter(insts, m_ClassFilters[i]); m_Classifiers[i].buildClassifier(newInsts); } } /** * Returns the distribution for an instance. * * @param inst the instance to get the distribution for * @return the computed distribution * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance inst) throws Exception { double[] probs = new double[inst.numClasses()]; Instance newInst; double sum = 0; for (int i = 0; i < inst.numClasses(); i++) { m_ClassFilters[i].input(inst); m_ClassFilters[i].batchFinished(); newInst = m_ClassFilters[i].output(); probs[i] = m_Classifiers[i].classifyInstance(newInst); if (probs[i] > 1) { probs[i] = 1; } if (probs[i] < 0){ probs[i] = 0; } sum += probs[i]; } if (sum != 0) { Utils.normalize(probs, sum); } return probs; } /** * Prints the classifiers. * * @return a string representation of the classifier */ public String toString() { if (m_Classifiers == null) { return "Classification via Regression: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("Classification via Regression\n\n"); for (int i = 0; i < m_Classifiers.length; i++) { text.append("Classifier for class with index " + i + ":\n\n"); text.append(m_Classifiers[i].toString() + "\n\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param argv the options for the learner */ public static void main(String [] argv){ runClassifier(new ClassificationViaRegression(), argv); } }