| 1 | /* | 
|---|
| 2 |  *    This program is free software; you can redistribute it and/or modify | 
|---|
| 3 |  *    it under the terms of the GNU General Public License as published by | 
|---|
| 4 |  *    the Free Software Foundation; either version 2 of the License, or | 
|---|
| 5 |  *    (at your option) any later version. | 
|---|
| 6 |  * | 
|---|
| 7 |  *    This program is distributed in the hope that it will be useful, | 
|---|
| 8 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 9 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 10 |  *    GNU General Public License for more details. | 
|---|
| 11 |  * | 
|---|
| 12 |  *    You should have received a copy of the GNU General Public License | 
|---|
| 13 |  *    along with this program; if not, write to the Free Software | 
|---|
| 14 |  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|---|
| 15 |  */ | 
|---|
| 16 |  | 
|---|
| 17 | /* | 
|---|
| 18 |  *    ClassificationViaRegression.java | 
|---|
| 19 |  *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand | 
|---|
| 20 |  * | 
|---|
| 21 |  */ | 
|---|
| 22 |  | 
|---|
| 23 | package weka.classifiers.meta; | 
|---|
| 24 |  | 
|---|
| 25 | import weka.classifiers.Classifier; | 
|---|
| 26 | import weka.classifiers.AbstractClassifier; | 
|---|
| 27 | import weka.classifiers.SingleClassifierEnhancer; | 
|---|
| 28 | import weka.core.Capabilities; | 
|---|
| 29 | import weka.core.Instance; | 
|---|
| 30 | import weka.core.Instances; | 
|---|
| 31 | import weka.core.RevisionUtils; | 
|---|
| 32 | import weka.core.TechnicalInformation; | 
|---|
| 33 | import weka.core.TechnicalInformationHandler; | 
|---|
| 34 | import weka.core.Utils; | 
|---|
| 35 | import weka.core.Capabilities.Capability; | 
|---|
| 36 | import weka.core.TechnicalInformation.Field; | 
|---|
| 37 | import weka.core.TechnicalInformation.Type; | 
|---|
| 38 | import weka.filters.Filter; | 
|---|
| 39 | import weka.filters.unsupervised.attribute.MakeIndicator; | 
|---|
| 40 |  | 
|---|
| 41 | /** | 
|---|
| 42 |  <!-- globalinfo-start --> | 
|---|
| 43 |  * Class for doing classification using regression methods. Class is binarized and one regression model is built for each class value. For more information, see, for example<br/> | 
|---|
| 44 |  * <br/> | 
|---|
| 45 |  * E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten (1998). Using model trees for classification. Machine Learning. 32(1):63-76. | 
|---|
| 46 |  * <p/> | 
|---|
| 47 |  <!-- globalinfo-end --> | 
|---|
| 48 |  *  | 
|---|
| 49 |  <!-- technical-bibtex-start --> | 
|---|
| 50 |  * BibTeX: | 
|---|
| 51 |  * <pre> | 
|---|
| 52 |  * @article{Frank1998, | 
|---|
| 53 |  *    author = {E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten}, | 
|---|
| 54 |  *    journal = {Machine Learning}, | 
|---|
| 55 |  *    number = {1}, | 
|---|
| 56 |  *    pages = {63-76}, | 
|---|
| 57 |  *    title = {Using model trees for classification}, | 
|---|
| 58 |  *    volume = {32}, | 
|---|
| 59 |  *    year = {1998} | 
|---|
| 60 |  * } | 
|---|
| 61 |  * </pre> | 
|---|
| 62 |  * <p/> | 
|---|
| 63 |  <!-- technical-bibtex-end --> | 
|---|
| 64 |  * | 
|---|
| 65 |  <!-- options-start --> | 
|---|
| 66 |  * Valid options are: <p/> | 
|---|
| 67 |  *  | 
|---|
| 68 |  * <pre> -D | 
|---|
| 69 |  *  If set, classifier is run in debug mode and | 
|---|
| 70 |  *  may output additional info to the console</pre> | 
|---|
| 71 |  *  | 
|---|
| 72 |  * <pre> -W | 
|---|
| 73 |  *  Full name of base classifier. | 
|---|
| 74 |  *  (default: weka.classifiers.trees.M5P)</pre> | 
|---|
| 75 |  *  | 
|---|
| 76 |  * <pre>  | 
|---|
| 77 |  * Options specific to classifier weka.classifiers.trees.M5P: | 
|---|
| 78 |  * </pre> | 
|---|
| 79 |  *  | 
|---|
| 80 |  * <pre> -N | 
|---|
| 81 |  *  Use unpruned tree/rules</pre> | 
|---|
| 82 |  *  | 
|---|
| 83 |  * <pre> -U | 
|---|
| 84 |  *  Use unsmoothed predictions</pre> | 
|---|
| 85 |  *  | 
|---|
| 86 |  * <pre> -R | 
|---|
| 87 |  *  Build regression tree/rule rather than a model tree/rule</pre> | 
|---|
| 88 |  *  | 
|---|
| 89 |  * <pre> -M <minimum number of instances> | 
|---|
| 90 |  *  Set minimum number of instances per leaf | 
|---|
| 91 |  *  (default 4)</pre> | 
|---|
| 92 |  *  | 
|---|
| 93 |  * <pre> -L | 
|---|
| 94 |  *  Save instances at the nodes in | 
|---|
| 95 |  *  the tree (for visualization purposes)</pre> | 
|---|
| 96 |  *  | 
|---|
| 97 |  <!-- options-end --> | 
|---|
| 98 |  * | 
|---|
| 99 |  * @author Eibe Frank (eibe@cs.waikato.ac.nz) | 
|---|
| 100 |  * @author Len Trigg (trigg@cs.waikato.ac.nz) | 
|---|
| 101 |  * @version $Revision: 5928 $  | 
|---|
| 102 | */ | 
|---|
| 103 | public class ClassificationViaRegression  | 
|---|
| 104 |   extends SingleClassifierEnhancer | 
|---|
| 105 |   implements TechnicalInformationHandler { | 
|---|
| 106 |  | 
|---|
| 107 |   /** for serialization */ | 
|---|
| 108 |   static final long serialVersionUID = 4500023123618669859L; | 
|---|
| 109 |    | 
|---|
| 110 |   /** The classifiers. (One for each class.) */ | 
|---|
| 111 |   private Classifier[] m_Classifiers; | 
|---|
| 112 |  | 
|---|
| 113 |   /** The filters used to transform the class. */ | 
|---|
| 114 |   private MakeIndicator[] m_ClassFilters; | 
|---|
| 115 |  | 
|---|
| 116 |   /** | 
|---|
| 117 |    * Default constructor. | 
|---|
| 118 |    */ | 
|---|
| 119 |   public ClassificationViaRegression() { | 
|---|
| 120 |      | 
|---|
| 121 |     m_Classifier = new weka.classifiers.trees.M5P(); | 
|---|
| 122 |   } | 
|---|
| 123 |      | 
|---|
| 124 |   /** | 
|---|
| 125 |    * Returns a string describing classifier | 
|---|
| 126 |    * @return a description suitable for | 
|---|
| 127 |    * displaying in the explorer/experimenter gui | 
|---|
| 128 |    */ | 
|---|
| 129 |   public String globalInfo() { | 
|---|
| 130 |   | 
|---|
| 131 |     return "Class for doing classification using regression methods. Class is " | 
|---|
| 132 |       + "binarized and one regression model is built for each class value. For more " | 
|---|
| 133 |       + "information, see, for example\n\n" | 
|---|
| 134 |       + getTechnicalInformation().toString(); | 
|---|
| 135 |   } | 
|---|
| 136 |  | 
|---|
| 137 |   /** | 
|---|
| 138 |    * Returns an instance of a TechnicalInformation object, containing  | 
|---|
| 139 |    * detailed information about the technical background of this class, | 
|---|
| 140 |    * e.g., paper reference or book this class is based on. | 
|---|
| 141 |    *  | 
|---|
| 142 |    * @return the technical information about this class | 
|---|
| 143 |    */ | 
|---|
| 144 |   public TechnicalInformation getTechnicalInformation() { | 
|---|
| 145 |     TechnicalInformation        result; | 
|---|
| 146 |      | 
|---|
| 147 |     result = new TechnicalInformation(Type.ARTICLE); | 
|---|
| 148 |     result.setValue(Field.AUTHOR, "E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten"); | 
|---|
| 149 |     result.setValue(Field.YEAR, "1998"); | 
|---|
| 150 |     result.setValue(Field.TITLE, "Using model trees for classification"); | 
|---|
| 151 |     result.setValue(Field.JOURNAL, "Machine Learning"); | 
|---|
| 152 |     result.setValue(Field.VOLUME, "32"); | 
|---|
| 153 |     result.setValue(Field.NUMBER, "1"); | 
|---|
| 154 |     result.setValue(Field.PAGES, "63-76"); | 
|---|
| 155 |      | 
|---|
| 156 |     return result; | 
|---|
| 157 |   } | 
|---|
| 158 |  | 
|---|
| 159 |   /** | 
|---|
| 160 |    * String describing default classifier. | 
|---|
| 161 |    *  | 
|---|
| 162 |    * @return the default classifier classname | 
|---|
| 163 |    */ | 
|---|
| 164 |   protected String defaultClassifierString() { | 
|---|
| 165 |      | 
|---|
| 166 |     return "weka.classifiers.trees.M5P"; | 
|---|
| 167 |   } | 
|---|
| 168 |  | 
|---|
| 169 |   /** | 
|---|
| 170 |    * Returns default capabilities of the classifier. | 
|---|
| 171 |    * | 
|---|
| 172 |    * @return      the capabilities of this classifier | 
|---|
| 173 |    */ | 
|---|
| 174 |   public Capabilities getCapabilities() { | 
|---|
| 175 |     Capabilities result = super.getCapabilities(); | 
|---|
| 176 |  | 
|---|
| 177 |     // class | 
|---|
| 178 |     result.disableAllClasses(); | 
|---|
| 179 |     result.disableAllClassDependencies(); | 
|---|
| 180 |     result.enable(Capability.NOMINAL_CLASS); | 
|---|
| 181 |      | 
|---|
| 182 |     return result; | 
|---|
| 183 |   } | 
|---|
| 184 |  | 
|---|
| 185 |   /** | 
|---|
| 186 |    * Builds the classifiers. | 
|---|
| 187 |    * | 
|---|
| 188 |    * @param insts the training data. | 
|---|
| 189 |    * @throws Exception if a classifier can't be built | 
|---|
| 190 |    */ | 
|---|
| 191 |   public void buildClassifier(Instances insts) throws Exception { | 
|---|
| 192 |  | 
|---|
| 193 |     Instances newInsts; | 
|---|
| 194 |  | 
|---|
| 195 |     // can classifier handle the data? | 
|---|
| 196 |     getCapabilities().testWithFail(insts); | 
|---|
| 197 |  | 
|---|
| 198 |     // remove instances with missing class | 
|---|
| 199 |     insts = new Instances(insts); | 
|---|
| 200 |     insts.deleteWithMissingClass(); | 
|---|
| 201 |      | 
|---|
| 202 |     m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, insts.numClasses()); | 
|---|
| 203 |     m_ClassFilters = new MakeIndicator[insts.numClasses()]; | 
|---|
| 204 |     for (int i = 0; i < insts.numClasses(); i++) { | 
|---|
| 205 |       m_ClassFilters[i] = new MakeIndicator(); | 
|---|
| 206 |       m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); | 
|---|
| 207 |       m_ClassFilters[i].setValueIndex(i); | 
|---|
| 208 |       m_ClassFilters[i].setNumeric(true); | 
|---|
| 209 |       m_ClassFilters[i].setInputFormat(insts); | 
|---|
| 210 |       newInsts = Filter.useFilter(insts, m_ClassFilters[i]); | 
|---|
| 211 |       m_Classifiers[i].buildClassifier(newInsts); | 
|---|
| 212 |     } | 
|---|
| 213 |   } | 
|---|
| 214 |  | 
|---|
| 215 |   /** | 
|---|
| 216 |    * Returns the distribution for an instance. | 
|---|
| 217 |    * | 
|---|
| 218 |    * @param inst the instance to get the distribution for | 
|---|
| 219 |    * @return the computed distribution | 
|---|
| 220 |    * @throws Exception if the distribution can't be computed successfully | 
|---|
| 221 |    */ | 
|---|
| 222 |   public double[] distributionForInstance(Instance inst) throws Exception { | 
|---|
| 223 |      | 
|---|
| 224 |     double[] probs = new double[inst.numClasses()]; | 
|---|
| 225 |     Instance newInst; | 
|---|
| 226 |     double sum = 0; | 
|---|
| 227 |  | 
|---|
| 228 |     for (int i = 0; i < inst.numClasses(); i++) { | 
|---|
| 229 |       m_ClassFilters[i].input(inst); | 
|---|
| 230 |       m_ClassFilters[i].batchFinished(); | 
|---|
| 231 |       newInst = m_ClassFilters[i].output(); | 
|---|
| 232 |       probs[i] = m_Classifiers[i].classifyInstance(newInst); | 
|---|
| 233 |       if (probs[i] > 1) { | 
|---|
| 234 |         probs[i] = 1; | 
|---|
| 235 |       } | 
|---|
| 236 |       if (probs[i] < 0){ | 
|---|
| 237 |         probs[i] = 0; | 
|---|
| 238 |       } | 
|---|
| 239 |       sum += probs[i]; | 
|---|
| 240 |     } | 
|---|
| 241 |     if (sum != 0) { | 
|---|
| 242 |       Utils.normalize(probs, sum); | 
|---|
| 243 |     }  | 
|---|
| 244 |     return probs; | 
|---|
| 245 |   } | 
|---|
| 246 |  | 
|---|
| 247 |   /** | 
|---|
| 248 |    * Prints the classifiers. | 
|---|
| 249 |    *  | 
|---|
| 250 |    * @return a string representation of the classifier | 
|---|
| 251 |    */ | 
|---|
| 252 |   public String toString() { | 
|---|
| 253 |  | 
|---|
| 254 |     if (m_Classifiers == null) { | 
|---|
| 255 |       return "Classification via Regression: No model built yet."; | 
|---|
| 256 |     } | 
|---|
| 257 |     StringBuffer text = new StringBuffer(); | 
|---|
| 258 |     text.append("Classification via Regression\n\n"); | 
|---|
| 259 |     for (int i = 0; i < m_Classifiers.length; i++) { | 
|---|
| 260 |       text.append("Classifier for class with index " + i + ":\n\n"); | 
|---|
| 261 |       text.append(m_Classifiers[i].toString() + "\n\n"); | 
|---|
| 262 |     } | 
|---|
| 263 |     return text.toString(); | 
|---|
| 264 |   } | 
|---|
| 265 |    | 
|---|
| 266 |   /** | 
|---|
| 267 |    * Returns the revision string. | 
|---|
| 268 |    *  | 
|---|
| 269 |    * @return            the revision | 
|---|
| 270 |    */ | 
|---|
| 271 |   public String getRevision() { | 
|---|
| 272 |     return RevisionUtils.extract("$Revision: 5928 $"); | 
|---|
| 273 |   } | 
|---|
| 274 |  | 
|---|
| 275 |   /** | 
|---|
| 276 |    * Main method for testing this class. | 
|---|
| 277 |    * | 
|---|
| 278 |    * @param argv the options for the learner | 
|---|
| 279 |    */ | 
|---|
| 280 |   public static void main(String [] argv){ | 
|---|
| 281 |     runClassifier(new ClassificationViaRegression(), argv); | 
|---|
| 282 |   } | 
|---|
| 283 | } | 
|---|