[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * ClassificationViaRegression.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.SingleClassifierEnhancer; |
---|
| 28 | import weka.core.Capabilities; |
---|
| 29 | import weka.core.Instance; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.core.RevisionUtils; |
---|
| 32 | import weka.core.TechnicalInformation; |
---|
| 33 | import weka.core.TechnicalInformationHandler; |
---|
| 34 | import weka.core.Utils; |
---|
| 35 | import weka.core.Capabilities.Capability; |
---|
| 36 | import weka.core.TechnicalInformation.Field; |
---|
| 37 | import weka.core.TechnicalInformation.Type; |
---|
| 38 | import weka.filters.Filter; |
---|
| 39 | import weka.filters.unsupervised.attribute.MakeIndicator; |
---|
| 40 | |
---|
| 41 | /** |
---|
| 42 | <!-- globalinfo-start --> |
---|
| 43 | * Class for doing classification using regression methods. Class is binarized and one regression model is built for each class value. For more information, see, for example<br/> |
---|
| 44 | * <br/> |
---|
| 45 | * E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten (1998). Using model trees for classification. Machine Learning. 32(1):63-76. |
---|
| 46 | * <p/> |
---|
| 47 | <!-- globalinfo-end --> |
---|
| 48 | * |
---|
| 49 | <!-- technical-bibtex-start --> |
---|
| 50 | * BibTeX: |
---|
| 51 | * <pre> |
---|
| 52 | * @article{Frank1998, |
---|
| 53 | * author = {E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten}, |
---|
| 54 | * journal = {Machine Learning}, |
---|
| 55 | * number = {1}, |
---|
| 56 | * pages = {63-76}, |
---|
| 57 | * title = {Using model trees for classification}, |
---|
| 58 | * volume = {32}, |
---|
| 59 | * year = {1998} |
---|
| 60 | * } |
---|
| 61 | * </pre> |
---|
| 62 | * <p/> |
---|
| 63 | <!-- technical-bibtex-end --> |
---|
| 64 | * |
---|
| 65 | <!-- options-start --> |
---|
| 66 | * Valid options are: <p/> |
---|
| 67 | * |
---|
| 68 | * <pre> -D |
---|
| 69 | * If set, classifier is run in debug mode and |
---|
| 70 | * may output additional info to the console</pre> |
---|
| 71 | * |
---|
| 72 | * <pre> -W |
---|
| 73 | * Full name of base classifier. |
---|
| 74 | * (default: weka.classifiers.trees.M5P)</pre> |
---|
| 75 | * |
---|
| 76 | * <pre> |
---|
| 77 | * Options specific to classifier weka.classifiers.trees.M5P: |
---|
| 78 | * </pre> |
---|
| 79 | * |
---|
| 80 | * <pre> -N |
---|
| 81 | * Use unpruned tree/rules</pre> |
---|
| 82 | * |
---|
| 83 | * <pre> -U |
---|
| 84 | * Use unsmoothed predictions</pre> |
---|
| 85 | * |
---|
| 86 | * <pre> -R |
---|
| 87 | * Build regression tree/rule rather than a model tree/rule</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -M <minimum number of instances> |
---|
| 90 | * Set minimum number of instances per leaf |
---|
| 91 | * (default 4)</pre> |
---|
| 92 | * |
---|
| 93 | * <pre> -L |
---|
| 94 | * Save instances at the nodes in |
---|
| 95 | * the tree (for visualization purposes)</pre> |
---|
| 96 | * |
---|
| 97 | <!-- options-end --> |
---|
| 98 | * |
---|
| 99 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 100 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 101 | * @version $Revision: 5928 $ |
---|
| 102 | */ |
---|
| 103 | public class ClassificationViaRegression |
---|
| 104 | extends SingleClassifierEnhancer |
---|
| 105 | implements TechnicalInformationHandler { |
---|
| 106 | |
---|
| 107 | /** for serialization */ |
---|
| 108 | static final long serialVersionUID = 4500023123618669859L; |
---|
| 109 | |
---|
| 110 | /** The classifiers. (One for each class.) */ |
---|
| 111 | private Classifier[] m_Classifiers; |
---|
| 112 | |
---|
| 113 | /** The filters used to transform the class. */ |
---|
| 114 | private MakeIndicator[] m_ClassFilters; |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * Default constructor. |
---|
| 118 | */ |
---|
| 119 | public ClassificationViaRegression() { |
---|
| 120 | |
---|
| 121 | m_Classifier = new weka.classifiers.trees.M5P(); |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | /** |
---|
| 125 | * Returns a string describing classifier |
---|
| 126 | * @return a description suitable for |
---|
| 127 | * displaying in the explorer/experimenter gui |
---|
| 128 | */ |
---|
| 129 | public String globalInfo() { |
---|
| 130 | |
---|
| 131 | return "Class for doing classification using regression methods. Class is " |
---|
| 132 | + "binarized and one regression model is built for each class value. For more " |
---|
| 133 | + "information, see, for example\n\n" |
---|
| 134 | + getTechnicalInformation().toString(); |
---|
| 135 | } |
---|
| 136 | |
---|
| 137 | /** |
---|
| 138 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 139 | * detailed information about the technical background of this class, |
---|
| 140 | * e.g., paper reference or book this class is based on. |
---|
| 141 | * |
---|
| 142 | * @return the technical information about this class |
---|
| 143 | */ |
---|
| 144 | public TechnicalInformation getTechnicalInformation() { |
---|
| 145 | TechnicalInformation result; |
---|
| 146 | |
---|
| 147 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 148 | result.setValue(Field.AUTHOR, "E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten"); |
---|
| 149 | result.setValue(Field.YEAR, "1998"); |
---|
| 150 | result.setValue(Field.TITLE, "Using model trees for classification"); |
---|
| 151 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
| 152 | result.setValue(Field.VOLUME, "32"); |
---|
| 153 | result.setValue(Field.NUMBER, "1"); |
---|
| 154 | result.setValue(Field.PAGES, "63-76"); |
---|
| 155 | |
---|
| 156 | return result; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | /** |
---|
| 160 | * String describing default classifier. |
---|
| 161 | * |
---|
| 162 | * @return the default classifier classname |
---|
| 163 | */ |
---|
| 164 | protected String defaultClassifierString() { |
---|
| 165 | |
---|
| 166 | return "weka.classifiers.trees.M5P"; |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | /** |
---|
| 170 | * Returns default capabilities of the classifier. |
---|
| 171 | * |
---|
| 172 | * @return the capabilities of this classifier |
---|
| 173 | */ |
---|
| 174 | public Capabilities getCapabilities() { |
---|
| 175 | Capabilities result = super.getCapabilities(); |
---|
| 176 | |
---|
| 177 | // class |
---|
| 178 | result.disableAllClasses(); |
---|
| 179 | result.disableAllClassDependencies(); |
---|
| 180 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 181 | |
---|
| 182 | return result; |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | /** |
---|
| 186 | * Builds the classifiers. |
---|
| 187 | * |
---|
| 188 | * @param insts the training data. |
---|
| 189 | * @throws Exception if a classifier can't be built |
---|
| 190 | */ |
---|
| 191 | public void buildClassifier(Instances insts) throws Exception { |
---|
| 192 | |
---|
| 193 | Instances newInsts; |
---|
| 194 | |
---|
| 195 | // can classifier handle the data? |
---|
| 196 | getCapabilities().testWithFail(insts); |
---|
| 197 | |
---|
| 198 | // remove instances with missing class |
---|
| 199 | insts = new Instances(insts); |
---|
| 200 | insts.deleteWithMissingClass(); |
---|
| 201 | |
---|
| 202 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, insts.numClasses()); |
---|
| 203 | m_ClassFilters = new MakeIndicator[insts.numClasses()]; |
---|
| 204 | for (int i = 0; i < insts.numClasses(); i++) { |
---|
| 205 | m_ClassFilters[i] = new MakeIndicator(); |
---|
| 206 | m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); |
---|
| 207 | m_ClassFilters[i].setValueIndex(i); |
---|
| 208 | m_ClassFilters[i].setNumeric(true); |
---|
| 209 | m_ClassFilters[i].setInputFormat(insts); |
---|
| 210 | newInsts = Filter.useFilter(insts, m_ClassFilters[i]); |
---|
| 211 | m_Classifiers[i].buildClassifier(newInsts); |
---|
| 212 | } |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | /** |
---|
| 216 | * Returns the distribution for an instance. |
---|
| 217 | * |
---|
| 218 | * @param inst the instance to get the distribution for |
---|
| 219 | * @return the computed distribution |
---|
| 220 | * @throws Exception if the distribution can't be computed successfully |
---|
| 221 | */ |
---|
| 222 | public double[] distributionForInstance(Instance inst) throws Exception { |
---|
| 223 | |
---|
| 224 | double[] probs = new double[inst.numClasses()]; |
---|
| 225 | Instance newInst; |
---|
| 226 | double sum = 0; |
---|
| 227 | |
---|
| 228 | for (int i = 0; i < inst.numClasses(); i++) { |
---|
| 229 | m_ClassFilters[i].input(inst); |
---|
| 230 | m_ClassFilters[i].batchFinished(); |
---|
| 231 | newInst = m_ClassFilters[i].output(); |
---|
| 232 | probs[i] = m_Classifiers[i].classifyInstance(newInst); |
---|
| 233 | if (probs[i] > 1) { |
---|
| 234 | probs[i] = 1; |
---|
| 235 | } |
---|
| 236 | if (probs[i] < 0){ |
---|
| 237 | probs[i] = 0; |
---|
| 238 | } |
---|
| 239 | sum += probs[i]; |
---|
| 240 | } |
---|
| 241 | if (sum != 0) { |
---|
| 242 | Utils.normalize(probs, sum); |
---|
| 243 | } |
---|
| 244 | return probs; |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | /** |
---|
| 248 | * Prints the classifiers. |
---|
| 249 | * |
---|
| 250 | * @return a string representation of the classifier |
---|
| 251 | */ |
---|
| 252 | public String toString() { |
---|
| 253 | |
---|
| 254 | if (m_Classifiers == null) { |
---|
| 255 | return "Classification via Regression: No model built yet."; |
---|
| 256 | } |
---|
| 257 | StringBuffer text = new StringBuffer(); |
---|
| 258 | text.append("Classification via Regression\n\n"); |
---|
| 259 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
| 260 | text.append("Classifier for class with index " + i + ":\n\n"); |
---|
| 261 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
| 262 | } |
---|
| 263 | return text.toString(); |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | /** |
---|
| 267 | * Returns the revision string. |
---|
| 268 | * |
---|
| 269 | * @return the revision |
---|
| 270 | */ |
---|
| 271 | public String getRevision() { |
---|
| 272 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | /** |
---|
| 276 | * Main method for testing this class. |
---|
| 277 | * |
---|
| 278 | * @param argv the options for the learner |
---|
| 279 | */ |
---|
| 280 | public static void main(String [] argv){ |
---|
| 281 | runClassifier(new ClassificationViaRegression(), argv); |
---|
| 282 | } |
---|
| 283 | } |
---|