source: src/main/java/weka/classifiers/meta/ClassificationViaClustering.java @ 16

Last change on this file since 16 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 14.2 KB
RevLine 
[4]1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 * ClassificationViaClustering.java
19 * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
20 */
21
22package weka.classifiers.meta;
23
24import weka.classifiers.Classifier;
25import weka.classifiers.AbstractClassifier;
26import weka.classifiers.rules.ZeroR;
27import weka.clusterers.ClusterEvaluation;
28import weka.clusterers.Clusterer;
29import weka.clusterers.AbstractClusterer;
30import weka.clusterers.SimpleKMeans;
31import weka.core.Capabilities;
32import weka.core.Instance;
33import weka.core.DenseInstance;
34import weka.core.Instances;
35import weka.core.Option;
36import weka.core.OptionHandler;
37import weka.core.RevisionUtils;
38import weka.core.Utils;
39import weka.core.Capabilities.Capability;
40
41import java.util.Enumeration;
42import java.util.Vector;
43
44/**
45 <!-- globalinfo-start -->
46 * A simple meta-classifier that uses a clusterer for classification. For cluster algorithms that use a fixed number of clusterers, like SimpleKMeans, the user has to make sure that the number of clusters to generate are the same as the number of class labels in the dataset in order to obtain a useful model.<br/>
47 * <br/>
48 * Note: at prediction time, a missing value is returned if no cluster is found for the instance.<br/>
49 * <br/>
50 * The code is based on the 'clusters to classes' functionality of the weka.clusterers.ClusterEvaluation class by Mark Hall.
51 * <p/>
52 <!-- globalinfo-end -->
53 *
54 <!-- options-start -->
55 * Valid options are: <p/>
56 *
57 * <pre> -D
58 *  If set, classifier is run in debug mode and
59 *  may output additional info to the console</pre>
60 *
61 * <pre> -W
62 *  Full name of clusterer.
63 *  (default: weka.clusterers.SimpleKMeans)</pre>
64 *
65 * <pre>
66 * Options specific to clusterer weka.clusterers.SimpleKMeans:
67 * </pre>
68 *
69 * <pre> -N &lt;num&gt;
70 *  number of clusters.
71 *  (default 2).</pre>
72 *
73 * <pre> -V
74 *  Display std. deviations for centroids.
75 * </pre>
76 *
77 * <pre> -M
78 *  Replace missing values with mean/mode.
79 * </pre>
80 *
81 * <pre> -S &lt;num&gt;
82 *  Random number seed.
83 *  (default 10)</pre>
84 *
85 <!-- options-end -->
86 *
87 * @author  fracpete (fracpete at waikato dot ac dot nz)
88 * @version $Revision: 5987 $
89 */
90public class ClassificationViaClustering
91  extends AbstractClassifier {
92 
93  /** for serialization */
94  private static final long serialVersionUID = -5687069451420259135L;
95
96  /** the cluster algorithm used (template) */
97  protected Clusterer m_Clusterer;
98
99  /** the actual cluster algorithm being used */
100  protected Clusterer m_ActualClusterer;
101 
102  /** the original training data header */
103  protected Instances m_OriginalHeader;
104 
105  /** the modified training data header */
106  protected Instances m_ClusteringHeader;
107 
108  /** the mapping between clusters and classes */
109  protected double[] m_ClustersToClasses;
110 
111  /** the default model */
112  protected Classifier m_ZeroR;
113 
114  /**
115   * default constructor
116   */
117  public ClassificationViaClustering() {
118    super();
119   
120    m_Clusterer = new SimpleKMeans();
121  }
122 
123  /**
124   * Returns a string describing classifier
125   *
126   * @return            a description suitable for displaying in the
127   *                    explorer/experimenter gui
128   */
129  public String globalInfo() {
130    return 
131        "A simple meta-classifier that uses a clusterer for classification. "
132      + "For cluster algorithms that use a fixed number of clusterers, like "
133      + "SimpleKMeans, the user has to make sure that the number of clusters "
134      + "to generate are the same as the number of class labels in the dataset "
135      + "in order to obtain a useful model.\n"
136      + "\n"
137      + "Note: at prediction time, a missing value is returned if no cluster "
138      + "is found for the instance.\n"
139      + "\n"
140      + "The code is based on the 'clusters to classes' functionality of the "
141      + "weka.clusterers.ClusterEvaluation class by Mark Hall.";
142  }
143
144  /**
145   * Gets an enumeration describing the available options.
146   *
147   * @return            an enumeration of all the available options.
148   */
149  public Enumeration listOptions(){
150    Vector              result;
151    Enumeration         enm;
152
153    result = new Vector();
154
155    enm = super.listOptions();
156    while (enm.hasMoreElements())
157      result.addElement(enm.nextElement());
158
159    result.addElement(new Option(
160        "\tFull name of clusterer.\n"
161        + "\t(default: " + defaultClustererString() +")",
162        "W", 1, "-W"));
163
164    result.addElement(new Option(
165        "",
166        "", 0, "\nOptions specific to clusterer "
167        + m_Clusterer.getClass().getName() + ":"));
168    enm = ((OptionHandler) m_Clusterer).listOptions();
169    while (enm.hasMoreElements())
170      result.addElement(enm.nextElement());
171
172    return result.elements();
173  }
174 
175  /**
176   * returns the options of the current setup
177   *
178   * @return            the current options
179   */
180  public String[] getOptions(){
181    int                 i;
182    Vector<String>      result;
183    String[]            options;
184
185    result = new Vector<String>();
186
187    result.add("-W");
188    result.add("" + getClusterer().getClass().getName());
189   
190    options = super.getOptions();
191    for (i = 0; i < options.length; i++)
192      result.add(options[i]);
193
194    if (getClusterer() instanceof OptionHandler) {
195      result.add("--");
196      options = ((OptionHandler) getClusterer()).getOptions();
197      for (i = 0; i < options.length; i++)
198        result.add(options[i]);
199    }
200
201    return result.toArray(new String[result.size()]);     
202  }
203
204  /**
205   * Parses the options for this object. <p/>
206   *
207   <!-- options-start -->
208   * Valid options are: <p/>
209   *
210   * <pre> -D
211   *  If set, classifier is run in debug mode and
212   *  may output additional info to the console</pre>
213   *
214   * <pre> -W
215   *  Full name of clusterer.
216   *  (default: weka.clusterers.SimpleKMeans)</pre>
217   *
218   * <pre>
219   * Options specific to clusterer weka.clusterers.SimpleKMeans:
220   * </pre>
221   *
222   * <pre> -N &lt;num&gt;
223   *  number of clusters.
224   *  (default 2).</pre>
225   *
226   * <pre> -V
227   *  Display std. deviations for centroids.
228   * </pre>
229   *
230   * <pre> -M
231   *  Replace missing values with mean/mode.
232   * </pre>
233   *
234   * <pre> -S &lt;num&gt;
235   *  Random number seed.
236   *  (default 10)</pre>
237   *
238   <!-- options-end -->
239   *
240   * @param options     the options to use
241   * @throws Exception  if setting of options fails
242   */
243  public void setOptions(String[] options) throws Exception {
244    String      tmpStr;
245
246    super.setOptions(options);
247
248    tmpStr = Utils.getOption('W', options);
249    if (tmpStr.length() > 0) { 
250      // This is just to set the classifier in case the option
251      // parsing fails.
252      setClusterer(AbstractClusterer.forName(tmpStr, null));
253      setClusterer(AbstractClusterer.forName(tmpStr, Utils.partitionOptions(options)));
254    }
255    else {
256      // This is just to set the classifier in case the option
257      // parsing fails.
258      setClusterer(AbstractClusterer.forName(defaultClustererString(), null));
259      setClusterer(AbstractClusterer.forName(defaultClustererString(), Utils.partitionOptions(options)));
260    }
261  }
262
263  /**
264   * String describing default clusterer.
265   *
266   * @return            the classname
267   */
268  protected String defaultClustererString() {
269    return SimpleKMeans.class.getName();
270  }
271 
272  /**
273   * Returns the tip text for this property
274   *
275   * @return            tip text for this property suitable for
276   *                    displaying in the explorer/experimenter gui
277   */
278  public String clustererTipText() {
279    return "The clusterer to be used.";
280  }
281
282  /**
283   * Set the base clusterer.
284   *
285   * @param value       the clusterer to use.
286   */
287  public void setClusterer(Clusterer value) {
288    m_Clusterer = value;
289  }
290
291  /**
292   * Get the clusterer used as the base learner.
293   *
294   * @return            the current clusterer
295   */
296  public Clusterer getClusterer() {
297    return m_Clusterer;
298  }
299
300  /**
301   * Classifies the given test instance.
302   *
303   * @param instance    the instance to be classified
304   * @return            the predicted most likely class for the instance or
305   *                    Utils.missingValue() if no prediction is made
306   * @throws Exception  if an error occurred during the prediction
307   */
308  public double classifyInstance(Instance instance) throws Exception {
309    double      result;
310    double[]    values;
311    Instance    newInst;
312    int         i;
313    int         n;
314   
315    if (m_ZeroR != null) {
316      result = m_ZeroR.classifyInstance(instance);
317    }
318    else {
319      if (m_ActualClusterer != null) {
320        // build new instance
321        values = new double[m_ClusteringHeader.numAttributes()];
322        n = 0;
323        for (i = 0; i < instance.numAttributes(); i++) {
324          if (i == instance.classIndex())
325            continue;
326          values[n] = instance.value(i);
327          n++;
328        }
329        newInst = new DenseInstance(instance.weight(), values);
330        newInst.setDataset(m_ClusteringHeader);
331
332        // determine cluster/class
333        result = m_ClustersToClasses[m_ActualClusterer.clusterInstance(newInst)];
334        if (result == -1)
335          result = Utils.missingValue();
336      }
337      else {
338        result = Utils.missingValue();
339      }
340    }
341   
342    return result;
343  }
344 
345  /**
346   * Returns default capabilities of the classifier.
347   *
348   * @return            the capabilities of this classifier
349   */
350  public Capabilities getCapabilities() {
351    Capabilities        result;
352   
353    result = m_Clusterer.getCapabilities();
354   
355    // class
356    result.disableAllClasses();
357    result.disable(Capability.NO_CLASS);
358    result.enable(Capability.NOMINAL_CLASS);
359   
360    return result;
361  }
362
363  /**
364   * builds the classifier
365   *
366   * @param data        the training instances
367   * @throws Exception  if something goes wrong
368   */
369  public void buildClassifier(Instances data) throws Exception {
370    Instances           clusterData;
371    ClusterEvaluation   eval;
372    int                 i;
373    Instance            instance;
374    int[][]             counts;
375    int[]               clusterTotals;
376    double[]            best;
377    double[]            current;
378    double[]            clusterAssignments;
379   
380    // can classifier handle the data?
381    getCapabilities().testWithFail(data);
382
383    // remove instances with missing class
384    data = new Instances(data);
385    data.deleteWithMissingClass();
386
387    // save original header (needed for clusters to classes output)
388    m_OriginalHeader = new Instances(data, 0);
389   
390    // remove class attribute for clusterer
391    clusterData = new Instances(data);
392    clusterData.setClassIndex(-1);
393    clusterData.deleteAttributeAt(m_OriginalHeader.classIndex());
394    m_ClusteringHeader = new Instances(clusterData, 0);
395
396    if (m_ClusteringHeader.numAttributes() == 0) {
397      System.err.println("Data contains only class attribute, defaulting to ZeroR model.");
398      m_ZeroR = new ZeroR();
399      m_ZeroR.buildClassifier(data);
400    }
401    else {
402      m_ZeroR = null;
403     
404      // build clusterer
405      m_ActualClusterer = AbstractClusterer.makeCopy(m_Clusterer);
406      m_ActualClusterer.buildClusterer(clusterData);
407
408      // evaluate clusterer on training set
409      eval = new ClusterEvaluation();
410      eval.setClusterer(m_ActualClusterer);
411      eval.evaluateClusterer(clusterData);
412      clusterAssignments = eval.getClusterAssignments();
413
414      // determine classes-to-clusters mapping
415      counts        = new int [eval.getNumClusters()][m_OriginalHeader.numClasses()];
416      clusterTotals = new int[eval.getNumClusters()];
417      best          = new double[eval.getNumClusters()+1];
418      current       = new double[eval.getNumClusters()+1];
419      for (i = 0; i < data.numInstances(); i++) {
420        instance = data.instance(i);
421        counts[(int) clusterAssignments[i]][(int) instance.classValue()]++;
422        clusterTotals[(int) clusterAssignments[i]]++;
423        i++;
424      }
425      best[eval.getNumClusters()] = Double.MAX_VALUE;
426      ClusterEvaluation.mapClasses(eval.getNumClusters(), 0, counts, clusterTotals, current, best, 0);
427      m_ClustersToClasses = new double[best.length];
428      System.arraycopy(best, 0, m_ClustersToClasses, 0, best.length);
429    }
430  }
431
432  /**
433   * Returns a string representation of the classifier.
434   *
435   * @return            a string representation of the classifier.
436   */
437  public String toString() {
438    StringBuffer        result;
439    int                 i;
440    int                 n;
441    boolean             found;
442   
443    result = new StringBuffer();
444   
445    // title
446    result.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n");
447    result.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n");
448   
449    // model
450    if (m_ActualClusterer != null) {
451      // output clusterer
452      result.append(m_ActualClusterer + "\n");
453     
454      // clusters to classes
455      result.append("Clusters to classes mapping:\n");
456      for (i = 0; i < m_ClustersToClasses.length - 1; i++) {
457        result.append("  " + (i+1) + ". Cluster: ");
458        if (m_ClustersToClasses[i] < 0)
459          result.append("no class");
460        else
461          result.append(
462              m_OriginalHeader.classAttribute().value((int) m_ClustersToClasses[i])
463              + " (" + ((int) m_ClustersToClasses[i] + 1) + ")");
464        result.append("\n");
465      }
466      result.append("\n");
467     
468      // classes to clusters
469      result.append("Classes to clusters mapping:\n");
470      for (i = 0; i < m_OriginalHeader.numClasses(); i++) {
471        result.append(
472            "  " + (i+1) + ". Class (" 
473            + m_OriginalHeader.classAttribute().value(i) + "): ");
474       
475        found = false;
476        for (n = 0; n < m_ClustersToClasses.length - 1; n++) {
477          if (((int) m_ClustersToClasses[n]) == i) {
478            found = true;
479            result.append((n+1) + ". Cluster");
480            break;
481          }
482        }
483       
484        if (!found)
485          result.append("no cluster");
486
487        result.append("\n");
488      }
489     
490      result.append("\n");
491    }
492    else {
493      result.append("no model built yet\n");
494    }
495   
496    return result.toString();
497  }
498 
499  /**
500   * Returns the revision string.
501   *
502   * @return            the revision
503   */
504  public String getRevision() {
505    return RevisionUtils.extract("$Revision: 5987 $");
506  }
507 
508  /**
509   * Runs the classifier with the given options
510   *
511   * @param args        the commandline options
512   */
513  public static void main(String[] args) {
514    runClassifier(new ClassificationViaClustering(), args);
515  }
516}
517
Note: See TracBrowser for help on using the repository browser.