1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Bagging.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
26 | import weka.classifiers.RandomizableParallelIteratedSingleClassifierEnhancer; |
---|
27 | import weka.core.AdditionalMeasureProducer; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.Randomizable; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.TechnicalInformation; |
---|
34 | import weka.core.TechnicalInformationHandler; |
---|
35 | import weka.core.Utils; |
---|
36 | import weka.core.WeightedInstancesHandler; |
---|
37 | import weka.core.TechnicalInformation.Field; |
---|
38 | import weka.core.TechnicalInformation.Type; |
---|
39 | |
---|
40 | import java.util.Enumeration; |
---|
41 | import java.util.Random; |
---|
42 | import java.util.Vector; |
---|
43 | |
---|
44 | /** |
---|
45 | <!-- globalinfo-start --> |
---|
46 | * Class for bagging a classifier to reduce variance. Can do classification and regression depending on the base learner. <br/> |
---|
47 | * <br/> |
---|
48 | * For more information, see<br/> |
---|
49 | * <br/> |
---|
50 | * Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140. |
---|
51 | * <p/> |
---|
52 | <!-- globalinfo-end --> |
---|
53 | * |
---|
54 | <!-- technical-bibtex-start --> |
---|
55 | * BibTeX: |
---|
56 | * <pre> |
---|
57 | * @article{Breiman1996, |
---|
58 | * author = {Leo Breiman}, |
---|
59 | * journal = {Machine Learning}, |
---|
60 | * number = {2}, |
---|
61 | * pages = {123-140}, |
---|
62 | * title = {Bagging predictors}, |
---|
63 | * volume = {24}, |
---|
64 | * year = {1996} |
---|
65 | * } |
---|
66 | * </pre> |
---|
67 | * <p/> |
---|
68 | <!-- technical-bibtex-end --> |
---|
69 | * |
---|
70 | <!-- options-start --> |
---|
71 | * Valid options are: <p/> |
---|
72 | * |
---|
73 | * <pre> -P |
---|
74 | * Size of each bag, as a percentage of the |
---|
75 | * training set size. (default 100)</pre> |
---|
76 | * |
---|
77 | * <pre> -O |
---|
78 | * Calculate the out of bag error.</pre> |
---|
79 | * |
---|
80 | * <pre> -S <num> |
---|
81 | * Random number seed. |
---|
82 | * (default 1)</pre> |
---|
83 | * |
---|
84 | * <pre> -I <num> |
---|
85 | * Number of iterations. |
---|
86 | * (default 10)</pre> |
---|
87 | * |
---|
88 | * <pre> -D |
---|
89 | * If set, classifier is run in debug mode and |
---|
90 | * may output additional info to the console</pre> |
---|
91 | * |
---|
92 | * <pre> -W |
---|
93 | * Full name of base classifier. |
---|
94 | * (default: weka.classifiers.trees.REPTree)</pre> |
---|
95 | * |
---|
96 | * <pre> |
---|
97 | * Options specific to classifier weka.classifiers.trees.REPTree: |
---|
98 | * </pre> |
---|
99 | * |
---|
100 | * <pre> -M <minimum number of instances> |
---|
101 | * Set minimum number of instances per leaf (default 2).</pre> |
---|
102 | * |
---|
103 | * <pre> -V <minimum variance for split> |
---|
104 | * Set minimum numeric class variance proportion |
---|
105 | * of train variance for split (default 1e-3).</pre> |
---|
106 | * |
---|
107 | * <pre> -N <number of folds> |
---|
108 | * Number of folds for reduced error pruning (default 3).</pre> |
---|
109 | * |
---|
110 | * <pre> -S <seed> |
---|
111 | * Seed for random data shuffling (default 1).</pre> |
---|
112 | * |
---|
113 | * <pre> -P |
---|
114 | * No pruning.</pre> |
---|
115 | * |
---|
116 | * <pre> -L |
---|
117 | * Maximum tree depth (default -1, no maximum)</pre> |
---|
118 | * |
---|
119 | <!-- options-end --> |
---|
120 | * |
---|
121 | * Options after -- are passed to the designated classifier.<p> |
---|
122 | * |
---|
123 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
124 | * @author Len Trigg (len@reeltwo.com) |
---|
125 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
126 | * @version $Revision: 5801 $ |
---|
127 | */ |
---|
128 | public class Bagging |
---|
129 | extends RandomizableParallelIteratedSingleClassifierEnhancer |
---|
130 | implements WeightedInstancesHandler, AdditionalMeasureProducer, |
---|
131 | TechnicalInformationHandler { |
---|
132 | |
---|
133 | /** for serialization */ |
---|
134 | static final long serialVersionUID = -505879962237199703L; |
---|
135 | |
---|
136 | /** The size of each bag sample, as a percentage of the training size */ |
---|
137 | protected int m_BagSizePercent = 100; |
---|
138 | |
---|
139 | /** Whether to calculate the out of bag error */ |
---|
140 | protected boolean m_CalcOutOfBag = false; |
---|
141 | |
---|
142 | /** The out of bag error that has been calculated */ |
---|
143 | protected double m_OutOfBagError; |
---|
144 | |
---|
145 | /** |
---|
146 | * Constructor. |
---|
147 | */ |
---|
148 | public Bagging() { |
---|
149 | |
---|
150 | m_Classifier = new weka.classifiers.trees.REPTree(); |
---|
151 | } |
---|
152 | |
---|
153 | /** |
---|
154 | * Returns a string describing classifier |
---|
155 | * @return a description suitable for |
---|
156 | * displaying in the explorer/experimenter gui |
---|
157 | */ |
---|
158 | public String globalInfo() { |
---|
159 | |
---|
160 | return "Class for bagging a classifier to reduce variance. Can do classification " |
---|
161 | + "and regression depending on the base learner. \n\n" |
---|
162 | + "For more information, see\n\n" |
---|
163 | + getTechnicalInformation().toString(); |
---|
164 | } |
---|
165 | |
---|
166 | /** |
---|
167 | * Returns an instance of a TechnicalInformation object, containing |
---|
168 | * detailed information about the technical background of this class, |
---|
169 | * e.g., paper reference or book this class is based on. |
---|
170 | * |
---|
171 | * @return the technical information about this class |
---|
172 | */ |
---|
173 | public TechnicalInformation getTechnicalInformation() { |
---|
174 | TechnicalInformation result; |
---|
175 | |
---|
176 | result = new TechnicalInformation(Type.ARTICLE); |
---|
177 | result.setValue(Field.AUTHOR, "Leo Breiman"); |
---|
178 | result.setValue(Field.YEAR, "1996"); |
---|
179 | result.setValue(Field.TITLE, "Bagging predictors"); |
---|
180 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
181 | result.setValue(Field.VOLUME, "24"); |
---|
182 | result.setValue(Field.NUMBER, "2"); |
---|
183 | result.setValue(Field.PAGES, "123-140"); |
---|
184 | |
---|
185 | return result; |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * String describing default classifier. |
---|
190 | * |
---|
191 | * @return the default classifier classname |
---|
192 | */ |
---|
193 | protected String defaultClassifierString() { |
---|
194 | |
---|
195 | return "weka.classifiers.trees.REPTree"; |
---|
196 | } |
---|
197 | |
---|
198 | /** |
---|
199 | * Returns an enumeration describing the available options. |
---|
200 | * |
---|
201 | * @return an enumeration of all the available options. |
---|
202 | */ |
---|
203 | public Enumeration listOptions() { |
---|
204 | |
---|
205 | Vector newVector = new Vector(2); |
---|
206 | |
---|
207 | newVector.addElement(new Option( |
---|
208 | "\tSize of each bag, as a percentage of the\n" |
---|
209 | + "\ttraining set size. (default 100)", |
---|
210 | "P", 1, "-P")); |
---|
211 | newVector.addElement(new Option( |
---|
212 | "\tCalculate the out of bag error.", |
---|
213 | "O", 0, "-O")); |
---|
214 | |
---|
215 | Enumeration enu = super.listOptions(); |
---|
216 | while (enu.hasMoreElements()) { |
---|
217 | newVector.addElement(enu.nextElement()); |
---|
218 | } |
---|
219 | return newVector.elements(); |
---|
220 | } |
---|
221 | |
---|
222 | |
---|
223 | /** |
---|
224 | * Parses a given list of options. <p/> |
---|
225 | * |
---|
226 | <!-- options-start --> |
---|
227 | * Valid options are: <p/> |
---|
228 | * |
---|
229 | * <pre> -P |
---|
230 | * Size of each bag, as a percentage of the |
---|
231 | * training set size. (default 100)</pre> |
---|
232 | * |
---|
233 | * <pre> -O |
---|
234 | * Calculate the out of bag error.</pre> |
---|
235 | * |
---|
236 | * <pre> -S <num> |
---|
237 | * Random number seed. |
---|
238 | * (default 1)</pre> |
---|
239 | * |
---|
240 | * <pre> -I <num> |
---|
241 | * Number of iterations. |
---|
242 | * (default 10)</pre> |
---|
243 | * |
---|
244 | * <pre> -D |
---|
245 | * If set, classifier is run in debug mode and |
---|
246 | * may output additional info to the console</pre> |
---|
247 | * |
---|
248 | * <pre> -W |
---|
249 | * Full name of base classifier. |
---|
250 | * (default: weka.classifiers.trees.REPTree)</pre> |
---|
251 | * |
---|
252 | * <pre> |
---|
253 | * Options specific to classifier weka.classifiers.trees.REPTree: |
---|
254 | * </pre> |
---|
255 | * |
---|
256 | * <pre> -M <minimum number of instances> |
---|
257 | * Set minimum number of instances per leaf (default 2).</pre> |
---|
258 | * |
---|
259 | * <pre> -V <minimum variance for split> |
---|
260 | * Set minimum numeric class variance proportion |
---|
261 | * of train variance for split (default 1e-3).</pre> |
---|
262 | * |
---|
263 | * <pre> -N <number of folds> |
---|
264 | * Number of folds for reduced error pruning (default 3).</pre> |
---|
265 | * |
---|
266 | * <pre> -S <seed> |
---|
267 | * Seed for random data shuffling (default 1).</pre> |
---|
268 | * |
---|
269 | * <pre> -P |
---|
270 | * No pruning.</pre> |
---|
271 | * |
---|
272 | * <pre> -L |
---|
273 | * Maximum tree depth (default -1, no maximum)</pre> |
---|
274 | * |
---|
275 | <!-- options-end --> |
---|
276 | * |
---|
277 | * Options after -- are passed to the designated classifier.<p> |
---|
278 | * |
---|
279 | * @param options the list of options as an array of strings |
---|
280 | * @throws Exception if an option is not supported |
---|
281 | */ |
---|
282 | public void setOptions(String[] options) throws Exception { |
---|
283 | |
---|
284 | String bagSize = Utils.getOption('P', options); |
---|
285 | if (bagSize.length() != 0) { |
---|
286 | setBagSizePercent(Integer.parseInt(bagSize)); |
---|
287 | } else { |
---|
288 | setBagSizePercent(100); |
---|
289 | } |
---|
290 | |
---|
291 | setCalcOutOfBag(Utils.getFlag('O', options)); |
---|
292 | |
---|
293 | super.setOptions(options); |
---|
294 | } |
---|
295 | |
---|
296 | /** |
---|
297 | * Gets the current settings of the Classifier. |
---|
298 | * |
---|
299 | * @return an array of strings suitable for passing to setOptions |
---|
300 | */ |
---|
301 | public String [] getOptions() { |
---|
302 | |
---|
303 | |
---|
304 | String [] superOptions = super.getOptions(); |
---|
305 | String [] options = new String [superOptions.length + 3]; |
---|
306 | |
---|
307 | int current = 0; |
---|
308 | options[current++] = "-P"; |
---|
309 | options[current++] = "" + getBagSizePercent(); |
---|
310 | |
---|
311 | if (getCalcOutOfBag()) { |
---|
312 | options[current++] = "-O"; |
---|
313 | } |
---|
314 | |
---|
315 | System.arraycopy(superOptions, 0, options, current, |
---|
316 | superOptions.length); |
---|
317 | |
---|
318 | current += superOptions.length; |
---|
319 | while (current < options.length) { |
---|
320 | options[current++] = ""; |
---|
321 | } |
---|
322 | return options; |
---|
323 | } |
---|
324 | |
---|
325 | /** |
---|
326 | * Returns the tip text for this property |
---|
327 | * @return tip text for this property suitable for |
---|
328 | * displaying in the explorer/experimenter gui |
---|
329 | */ |
---|
330 | public String bagSizePercentTipText() { |
---|
331 | return "Size of each bag, as a percentage of the training set size."; |
---|
332 | } |
---|
333 | |
---|
334 | /** |
---|
335 | * Gets the size of each bag, as a percentage of the training set size. |
---|
336 | * |
---|
337 | * @return the bag size, as a percentage. |
---|
338 | */ |
---|
339 | public int getBagSizePercent() { |
---|
340 | |
---|
341 | return m_BagSizePercent; |
---|
342 | } |
---|
343 | |
---|
344 | /** |
---|
345 | * Sets the size of each bag, as a percentage of the training set size. |
---|
346 | * |
---|
347 | * @param newBagSizePercent the bag size, as a percentage. |
---|
348 | */ |
---|
349 | public void setBagSizePercent(int newBagSizePercent) { |
---|
350 | |
---|
351 | m_BagSizePercent = newBagSizePercent; |
---|
352 | } |
---|
353 | |
---|
354 | /** |
---|
355 | * Returns the tip text for this property |
---|
356 | * @return tip text for this property suitable for |
---|
357 | * displaying in the explorer/experimenter gui |
---|
358 | */ |
---|
359 | public String calcOutOfBagTipText() { |
---|
360 | return "Whether the out-of-bag error is calculated."; |
---|
361 | } |
---|
362 | |
---|
363 | /** |
---|
364 | * Set whether the out of bag error is calculated. |
---|
365 | * |
---|
366 | * @param calcOutOfBag whether to calculate the out of bag error |
---|
367 | */ |
---|
368 | public void setCalcOutOfBag(boolean calcOutOfBag) { |
---|
369 | |
---|
370 | m_CalcOutOfBag = calcOutOfBag; |
---|
371 | } |
---|
372 | |
---|
373 | /** |
---|
374 | * Get whether the out of bag error is calculated. |
---|
375 | * |
---|
376 | * @return whether the out of bag error is calculated |
---|
377 | */ |
---|
378 | public boolean getCalcOutOfBag() { |
---|
379 | |
---|
380 | return m_CalcOutOfBag; |
---|
381 | } |
---|
382 | |
---|
383 | /** |
---|
384 | * Gets the out of bag error that was calculated as the classifier |
---|
385 | * was built. |
---|
386 | * |
---|
387 | * @return the out of bag error |
---|
388 | */ |
---|
389 | public double measureOutOfBagError() { |
---|
390 | |
---|
391 | return m_OutOfBagError; |
---|
392 | } |
---|
393 | |
---|
394 | /** |
---|
395 | * Returns an enumeration of the additional measure names. |
---|
396 | * |
---|
397 | * @return an enumeration of the measure names |
---|
398 | */ |
---|
399 | public Enumeration enumerateMeasures() { |
---|
400 | |
---|
401 | Vector newVector = new Vector(1); |
---|
402 | newVector.addElement("measureOutOfBagError"); |
---|
403 | return newVector.elements(); |
---|
404 | } |
---|
405 | |
---|
406 | /** |
---|
407 | * Returns the value of the named measure. |
---|
408 | * |
---|
409 | * @param additionalMeasureName the name of the measure to query for its value |
---|
410 | * @return the value of the named measure |
---|
411 | * @throws IllegalArgumentException if the named measure is not supported |
---|
412 | */ |
---|
413 | public double getMeasure(String additionalMeasureName) { |
---|
414 | |
---|
415 | if (additionalMeasureName.equalsIgnoreCase("measureOutOfBagError")) { |
---|
416 | return measureOutOfBagError(); |
---|
417 | } |
---|
418 | else {throw new IllegalArgumentException(additionalMeasureName |
---|
419 | + " not supported (Bagging)"); |
---|
420 | } |
---|
421 | } |
---|
422 | |
---|
423 | /** |
---|
424 | * Creates a new dataset of the same size using random sampling |
---|
425 | * with replacement according to the given weight vector. The |
---|
426 | * weights of the instances in the new dataset are set to one. |
---|
427 | * The length of the weight vector has to be the same as the |
---|
428 | * number of instances in the dataset, and all weights have to |
---|
429 | * be positive. |
---|
430 | * |
---|
431 | * @param data the data to be sampled from |
---|
432 | * @param random a random number generator |
---|
433 | * @param sampled indicating which instance has been sampled |
---|
434 | * @return the new dataset |
---|
435 | * @throws IllegalArgumentException if the weights array is of the wrong |
---|
436 | * length or contains negative weights. |
---|
437 | */ |
---|
438 | public final Instances resampleWithWeights(Instances data, |
---|
439 | Random random, |
---|
440 | boolean[] sampled) { |
---|
441 | |
---|
442 | double[] weights = new double[data.numInstances()]; |
---|
443 | for (int i = 0; i < weights.length; i++) { |
---|
444 | weights[i] = data.instance(i).weight(); |
---|
445 | } |
---|
446 | Instances newData = new Instances(data, data.numInstances()); |
---|
447 | if (data.numInstances() == 0) { |
---|
448 | return newData; |
---|
449 | } |
---|
450 | double[] probabilities = new double[data.numInstances()]; |
---|
451 | double sumProbs = 0, sumOfWeights = Utils.sum(weights); |
---|
452 | for (int i = 0; i < data.numInstances(); i++) { |
---|
453 | sumProbs += random.nextDouble(); |
---|
454 | probabilities[i] = sumProbs; |
---|
455 | } |
---|
456 | Utils.normalize(probabilities, sumProbs / sumOfWeights); |
---|
457 | |
---|
458 | // Make sure that rounding errors don't mess things up |
---|
459 | probabilities[data.numInstances() - 1] = sumOfWeights; |
---|
460 | int k = 0; int l = 0; |
---|
461 | sumProbs = 0; |
---|
462 | while ((k < data.numInstances() && (l < data.numInstances()))) { |
---|
463 | if (weights[l] < 0) { |
---|
464 | throw new IllegalArgumentException("Weights have to be positive."); |
---|
465 | } |
---|
466 | sumProbs += weights[l]; |
---|
467 | while ((k < data.numInstances()) && |
---|
468 | (probabilities[k] <= sumProbs)) { |
---|
469 | newData.add(data.instance(l)); |
---|
470 | sampled[l] = true; |
---|
471 | newData.instance(k).setWeight(1); |
---|
472 | k++; |
---|
473 | } |
---|
474 | l++; |
---|
475 | } |
---|
476 | return newData; |
---|
477 | } |
---|
478 | |
---|
479 | protected Random m_random; |
---|
480 | protected boolean[][] m_inBag; |
---|
481 | protected Instances m_data; |
---|
482 | |
---|
483 | /** |
---|
484 | * Returns a training set for a particular iteration. |
---|
485 | * |
---|
486 | * @param iteration the number of the iteration for the requested training set. |
---|
487 | * @return the training set for the supplied iteration number |
---|
488 | * @throws Exception if something goes wrong when generating a training set. |
---|
489 | */ |
---|
490 | protected synchronized Instances getTrainingSet(int iteration) throws Exception { |
---|
491 | int bagSize = m_data.numInstances() * m_BagSizePercent / 100; |
---|
492 | Instances bagData = null; |
---|
493 | |
---|
494 | // create the in-bag dataset |
---|
495 | if (m_CalcOutOfBag) { |
---|
496 | m_inBag[iteration] = new boolean[m_data.numInstances()]; |
---|
497 | bagData = resampleWithWeights(m_data, m_random, m_inBag[iteration]); |
---|
498 | } else { |
---|
499 | bagData = m_data.resampleWithWeights(m_random); |
---|
500 | if (bagSize < m_data.numInstances()) { |
---|
501 | bagData.randomize(m_random); |
---|
502 | Instances newBagData = new Instances(bagData, 0, bagSize); |
---|
503 | bagData = newBagData; |
---|
504 | } |
---|
505 | } |
---|
506 | |
---|
507 | return bagData; |
---|
508 | } |
---|
509 | |
---|
510 | /** |
---|
511 | * Bagging method. |
---|
512 | * |
---|
513 | * @param data the training data to be used for generating the |
---|
514 | * bagged classifier. |
---|
515 | * @throws Exception if the classifier could not be built successfully |
---|
516 | */ |
---|
517 | public void buildClassifier(Instances data) throws Exception { |
---|
518 | |
---|
519 | // can classifier handle the data? |
---|
520 | getCapabilities().testWithFail(data); |
---|
521 | |
---|
522 | // remove instances with missing class |
---|
523 | m_data = new Instances(data); |
---|
524 | m_data.deleteWithMissingClass(); |
---|
525 | |
---|
526 | super.buildClassifier(m_data); |
---|
527 | |
---|
528 | if (m_CalcOutOfBag && (m_BagSizePercent != 100)) { |
---|
529 | throw new IllegalArgumentException("Bag size needs to be 100% if " + |
---|
530 | "out-of-bag error is to be calculated!"); |
---|
531 | } |
---|
532 | |
---|
533 | int bagSize = m_data.numInstances() * m_BagSizePercent / 100; |
---|
534 | m_random = new Random(m_Seed); |
---|
535 | |
---|
536 | m_inBag = null; |
---|
537 | if (m_CalcOutOfBag) |
---|
538 | m_inBag = new boolean[m_Classifiers.length][]; |
---|
539 | |
---|
540 | for (int j = 0; j < m_Classifiers.length; j++) { |
---|
541 | if (m_Classifier instanceof Randomizable) { |
---|
542 | ((Randomizable) m_Classifiers[j]).setSeed(m_random.nextInt()); |
---|
543 | } |
---|
544 | } |
---|
545 | |
---|
546 | buildClassifiers(); |
---|
547 | |
---|
548 | // calc OOB error? |
---|
549 | if (getCalcOutOfBag()) { |
---|
550 | double outOfBagCount = 0.0; |
---|
551 | double errorSum = 0.0; |
---|
552 | boolean numeric = m_data.classAttribute().isNumeric(); |
---|
553 | |
---|
554 | for (int i = 0; i < m_data.numInstances(); i++) { |
---|
555 | double vote; |
---|
556 | double[] votes; |
---|
557 | if (numeric) |
---|
558 | votes = new double[1]; |
---|
559 | else |
---|
560 | votes = new double[m_data.numClasses()]; |
---|
561 | |
---|
562 | // determine predictions for instance |
---|
563 | int voteCount = 0; |
---|
564 | for (int j = 0; j < m_Classifiers.length; j++) { |
---|
565 | if (m_inBag[j][i]) |
---|
566 | continue; |
---|
567 | |
---|
568 | voteCount++; |
---|
569 | double pred = m_Classifiers[j].classifyInstance(m_data.instance(i)); |
---|
570 | if (numeric) |
---|
571 | votes[0] += pred; |
---|
572 | else |
---|
573 | votes[(int) pred]++; |
---|
574 | } |
---|
575 | |
---|
576 | // "vote" |
---|
577 | if (numeric) { |
---|
578 | vote = votes[0]; |
---|
579 | if (voteCount > 0) { |
---|
580 | vote /= voteCount; // average |
---|
581 | } |
---|
582 | } else { |
---|
583 | vote = Utils.maxIndex(votes); // majority vote |
---|
584 | } |
---|
585 | |
---|
586 | // error for instance |
---|
587 | outOfBagCount += m_data.instance(i).weight(); |
---|
588 | if (numeric) { |
---|
589 | errorSum += StrictMath.abs(vote - m_data.instance(i).classValue()) |
---|
590 | * m_data.instance(i).weight(); |
---|
591 | } |
---|
592 | else { |
---|
593 | if (vote != m_data.instance(i).classValue()) |
---|
594 | errorSum += m_data.instance(i).weight(); |
---|
595 | } |
---|
596 | } |
---|
597 | |
---|
598 | m_OutOfBagError = errorSum / outOfBagCount; |
---|
599 | } |
---|
600 | else { |
---|
601 | m_OutOfBagError = 0; |
---|
602 | } |
---|
603 | |
---|
604 | // save memory |
---|
605 | m_data = null; |
---|
606 | } |
---|
607 | |
---|
608 | /** |
---|
609 | * Calculates the class membership probabilities for the given test |
---|
610 | * instance. |
---|
611 | * |
---|
612 | * @param instance the instance to be classified |
---|
613 | * @return preedicted class probability distribution |
---|
614 | * @throws Exception if distribution can't be computed successfully |
---|
615 | */ |
---|
616 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
617 | |
---|
618 | double [] sums = new double [instance.numClasses()], newProbs; |
---|
619 | |
---|
620 | for (int i = 0; i < m_NumIterations; i++) { |
---|
621 | if (instance.classAttribute().isNumeric() == true) { |
---|
622 | sums[0] += m_Classifiers[i].classifyInstance(instance); |
---|
623 | } else { |
---|
624 | newProbs = m_Classifiers[i].distributionForInstance(instance); |
---|
625 | for (int j = 0; j < newProbs.length; j++) |
---|
626 | sums[j] += newProbs[j]; |
---|
627 | } |
---|
628 | } |
---|
629 | if (instance.classAttribute().isNumeric() == true) { |
---|
630 | sums[0] /= (double)m_NumIterations; |
---|
631 | return sums; |
---|
632 | } else if (Utils.eq(Utils.sum(sums), 0)) { |
---|
633 | return sums; |
---|
634 | } else { |
---|
635 | Utils.normalize(sums); |
---|
636 | return sums; |
---|
637 | } |
---|
638 | } |
---|
639 | |
---|
640 | /** |
---|
641 | * Returns description of the bagged classifier. |
---|
642 | * |
---|
643 | * @return description of the bagged classifier as a string |
---|
644 | */ |
---|
645 | public String toString() { |
---|
646 | |
---|
647 | if (m_Classifiers == null) { |
---|
648 | return "Bagging: No model built yet."; |
---|
649 | } |
---|
650 | StringBuffer text = new StringBuffer(); |
---|
651 | text.append("All the base classifiers: \n\n"); |
---|
652 | for (int i = 0; i < m_Classifiers.length; i++) |
---|
653 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
654 | |
---|
655 | if (m_CalcOutOfBag) { |
---|
656 | text.append("Out of bag error: " |
---|
657 | + Utils.doubleToString(m_OutOfBagError, 4) |
---|
658 | + "\n\n"); |
---|
659 | } |
---|
660 | |
---|
661 | return text.toString(); |
---|
662 | } |
---|
663 | |
---|
664 | /** |
---|
665 | * Returns the revision string. |
---|
666 | * |
---|
667 | * @return the revision |
---|
668 | */ |
---|
669 | public String getRevision() { |
---|
670 | return RevisionUtils.extract("$Revision: 5801 $"); |
---|
671 | } |
---|
672 | |
---|
673 | /** |
---|
674 | * Main method for testing this class. |
---|
675 | * |
---|
676 | * @param argv the options |
---|
677 | */ |
---|
678 | public static void main(String [] argv) { |
---|
679 | runClassifier(new Bagging(), argv); |
---|
680 | } |
---|
681 | } |
---|