[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * AttributeSelectedClassifier.java |
---|
| 19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.attributeSelection.ASEvaluation; |
---|
| 26 | import weka.attributeSelection.ASSearch; |
---|
| 27 | import weka.attributeSelection.AttributeSelection; |
---|
| 28 | import weka.classifiers.SingleClassifierEnhancer; |
---|
| 29 | import weka.core.AdditionalMeasureProducer; |
---|
| 30 | import weka.core.Capabilities; |
---|
| 31 | import weka.core.Drawable; |
---|
| 32 | import weka.core.Instance; |
---|
| 33 | import weka.core.Instances; |
---|
| 34 | import weka.core.Option; |
---|
| 35 | import weka.core.OptionHandler; |
---|
| 36 | import weka.core.RevisionUtils; |
---|
| 37 | import weka.core.Utils; |
---|
| 38 | import weka.core.WeightedInstancesHandler; |
---|
| 39 | import weka.core.Capabilities.Capability; |
---|
| 40 | |
---|
| 41 | import java.util.Enumeration; |
---|
| 42 | import java.util.Random; |
---|
| 43 | import java.util.Vector; |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | <!-- globalinfo-start --> |
---|
| 47 | * Dimensionality of training and test data is reduced by attribute selection before being passed on to a classifier. |
---|
| 48 | * <p/> |
---|
| 49 | <!-- globalinfo-end --> |
---|
| 50 | * |
---|
| 51 | <!-- options-start --> |
---|
| 52 | * Valid options are: <p/> |
---|
| 53 | * |
---|
| 54 | * <pre> -E <attribute evaluator specification> |
---|
| 55 | * Full class name of attribute evaluator, followed |
---|
| 56 | * by its options. |
---|
| 57 | * eg: "weka.attributeSelection.CfsSubsetEval -L" |
---|
| 58 | * (default weka.attributeSelection.CfsSubsetEval)</pre> |
---|
| 59 | * |
---|
| 60 | * <pre> -S <search method specification> |
---|
| 61 | * Full class name of search method, followed |
---|
| 62 | * by its options. |
---|
| 63 | * eg: "weka.attributeSelection.BestFirst -D 1" |
---|
| 64 | * (default weka.attributeSelection.BestFirst)</pre> |
---|
| 65 | * |
---|
| 66 | * <pre> -D |
---|
| 67 | * If set, classifier is run in debug mode and |
---|
| 68 | * may output additional info to the console</pre> |
---|
| 69 | * |
---|
| 70 | * <pre> -W |
---|
| 71 | * Full name of base classifier. |
---|
| 72 | * (default: weka.classifiers.trees.J48)</pre> |
---|
| 73 | * |
---|
| 74 | * <pre> |
---|
| 75 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
| 76 | * </pre> |
---|
| 77 | * |
---|
| 78 | * <pre> -U |
---|
| 79 | * Use unpruned tree.</pre> |
---|
| 80 | * |
---|
| 81 | * <pre> -C <pruning confidence> |
---|
| 82 | * Set confidence threshold for pruning. |
---|
| 83 | * (default 0.25)</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -M <minimum number of instances> |
---|
| 86 | * Set minimum number of instances per leaf. |
---|
| 87 | * (default 2)</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -R |
---|
| 90 | * Use reduced error pruning.</pre> |
---|
| 91 | * |
---|
| 92 | * <pre> -N <number of folds> |
---|
| 93 | * Set number of folds for reduced error |
---|
| 94 | * pruning. One fold is used as pruning set. |
---|
| 95 | * (default 3)</pre> |
---|
| 96 | * |
---|
| 97 | * <pre> -B |
---|
| 98 | * Use binary splits only.</pre> |
---|
| 99 | * |
---|
| 100 | * <pre> -S |
---|
| 101 | * Don't perform subtree raising.</pre> |
---|
| 102 | * |
---|
| 103 | * <pre> -L |
---|
| 104 | * Do not clean up after the tree has been built.</pre> |
---|
| 105 | * |
---|
| 106 | * <pre> -A |
---|
| 107 | * Laplace smoothing for predicted probabilities.</pre> |
---|
| 108 | * |
---|
| 109 | * <pre> -Q <seed> |
---|
| 110 | * Seed for random data shuffling (default 1).</pre> |
---|
| 111 | * |
---|
| 112 | <!-- options-end --> |
---|
| 113 | * |
---|
| 114 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 115 | * @version $Revision: 1.26 $ |
---|
| 116 | */ |
---|
| 117 | public class AttributeSelectedClassifier |
---|
| 118 | extends SingleClassifierEnhancer |
---|
| 119 | implements OptionHandler, Drawable, AdditionalMeasureProducer, |
---|
| 120 | WeightedInstancesHandler { |
---|
| 121 | |
---|
| 122 | /** for serialization */ |
---|
| 123 | static final long serialVersionUID = -5951805453487947577L; |
---|
| 124 | |
---|
| 125 | /** The attribute selection object */ |
---|
| 126 | protected AttributeSelection m_AttributeSelection = null; |
---|
| 127 | |
---|
| 128 | /** The attribute evaluator to use */ |
---|
| 129 | protected ASEvaluation m_Evaluator = |
---|
| 130 | new weka.attributeSelection.CfsSubsetEval(); |
---|
| 131 | |
---|
| 132 | /** The search method to use */ |
---|
| 133 | protected ASSearch m_Search = new weka.attributeSelection.BestFirst(); |
---|
| 134 | |
---|
| 135 | /** The header of the dimensionally reduced data */ |
---|
| 136 | protected Instances m_ReducedHeader; |
---|
| 137 | |
---|
| 138 | /** The number of class vals in the training data (1 if class is numeric) */ |
---|
| 139 | protected int m_numClasses; |
---|
| 140 | |
---|
| 141 | /** The number of attributes selected by the attribute selection phase */ |
---|
| 142 | protected double m_numAttributesSelected; |
---|
| 143 | |
---|
| 144 | /** The time taken to select attributes in milliseconds */ |
---|
| 145 | protected double m_selectionTime; |
---|
| 146 | |
---|
| 147 | /** The time taken to select attributes AND build the classifier */ |
---|
| 148 | protected double m_totalTime; |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | /** |
---|
| 152 | * String describing default classifier. |
---|
| 153 | * |
---|
| 154 | * @return the default classifier classname |
---|
| 155 | */ |
---|
| 156 | protected String defaultClassifierString() { |
---|
| 157 | |
---|
| 158 | return "weka.classifiers.trees.J48"; |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | /** |
---|
| 162 | * Default constructor. |
---|
| 163 | */ |
---|
| 164 | public AttributeSelectedClassifier() { |
---|
| 165 | m_Classifier = new weka.classifiers.trees.J48(); |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /** |
---|
| 169 | * Returns a string describing this search method |
---|
| 170 | * @return a description of the search method suitable for |
---|
| 171 | * displaying in the explorer/experimenter gui |
---|
| 172 | */ |
---|
| 173 | public String globalInfo() { |
---|
| 174 | return "Dimensionality of training and test data is reduced by " |
---|
| 175 | +"attribute selection before being passed on to a classifier."; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | /** |
---|
| 179 | * Returns an enumeration describing the available options. |
---|
| 180 | * |
---|
| 181 | * @return an enumeration of all the available options. |
---|
| 182 | */ |
---|
| 183 | public Enumeration listOptions() { |
---|
| 184 | Vector newVector = new Vector(3); |
---|
| 185 | |
---|
| 186 | newVector.addElement(new Option( |
---|
| 187 | "\tFull class name of attribute evaluator, followed\n" |
---|
| 188 | + "\tby its options.\n" |
---|
| 189 | + "\teg: \"weka.attributeSelection.CfsSubsetEval -L\"\n" |
---|
| 190 | + "\t(default weka.attributeSelection.CfsSubsetEval)", |
---|
| 191 | "E", 1, "-E <attribute evaluator specification>")); |
---|
| 192 | |
---|
| 193 | newVector.addElement(new Option( |
---|
| 194 | "\tFull class name of search method, followed\n" |
---|
| 195 | + "\tby its options.\n" |
---|
| 196 | + "\teg: \"weka.attributeSelection.BestFirst -D 1\"\n" |
---|
| 197 | + "\t(default weka.attributeSelection.BestFirst)", |
---|
| 198 | "S", 1, "-S <search method specification>")); |
---|
| 199 | |
---|
| 200 | Enumeration enu = super.listOptions(); |
---|
| 201 | while (enu.hasMoreElements()) { |
---|
| 202 | newVector.addElement(enu.nextElement()); |
---|
| 203 | } |
---|
| 204 | return newVector.elements(); |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | /** |
---|
| 208 | * Parses a given list of options. <p/> |
---|
| 209 | * |
---|
| 210 | <!-- options-start --> |
---|
| 211 | * Valid options are: <p/> |
---|
| 212 | * |
---|
| 213 | * <pre> -E <attribute evaluator specification> |
---|
| 214 | * Full class name of attribute evaluator, followed |
---|
| 215 | * by its options. |
---|
| 216 | * eg: "weka.attributeSelection.CfsSubsetEval -L" |
---|
| 217 | * (default weka.attributeSelection.CfsSubsetEval)</pre> |
---|
| 218 | * |
---|
| 219 | * <pre> -S <search method specification> |
---|
| 220 | * Full class name of search method, followed |
---|
| 221 | * by its options. |
---|
| 222 | * eg: "weka.attributeSelection.BestFirst -D 1" |
---|
| 223 | * (default weka.attributeSelection.BestFirst)</pre> |
---|
| 224 | * |
---|
| 225 | * <pre> -D |
---|
| 226 | * If set, classifier is run in debug mode and |
---|
| 227 | * may output additional info to the console</pre> |
---|
| 228 | * |
---|
| 229 | * <pre> -W |
---|
| 230 | * Full name of base classifier. |
---|
| 231 | * (default: weka.classifiers.trees.J48)</pre> |
---|
| 232 | * |
---|
| 233 | * <pre> |
---|
| 234 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
| 235 | * </pre> |
---|
| 236 | * |
---|
| 237 | * <pre> -U |
---|
| 238 | * Use unpruned tree.</pre> |
---|
| 239 | * |
---|
| 240 | * <pre> -C <pruning confidence> |
---|
| 241 | * Set confidence threshold for pruning. |
---|
| 242 | * (default 0.25)</pre> |
---|
| 243 | * |
---|
| 244 | * <pre> -M <minimum number of instances> |
---|
| 245 | * Set minimum number of instances per leaf. |
---|
| 246 | * (default 2)</pre> |
---|
| 247 | * |
---|
| 248 | * <pre> -R |
---|
| 249 | * Use reduced error pruning.</pre> |
---|
| 250 | * |
---|
| 251 | * <pre> -N <number of folds> |
---|
| 252 | * Set number of folds for reduced error |
---|
| 253 | * pruning. One fold is used as pruning set. |
---|
| 254 | * (default 3)</pre> |
---|
| 255 | * |
---|
| 256 | * <pre> -B |
---|
| 257 | * Use binary splits only.</pre> |
---|
| 258 | * |
---|
| 259 | * <pre> -S |
---|
| 260 | * Don't perform subtree raising.</pre> |
---|
| 261 | * |
---|
| 262 | * <pre> -L |
---|
| 263 | * Do not clean up after the tree has been built.</pre> |
---|
| 264 | * |
---|
| 265 | * <pre> -A |
---|
| 266 | * Laplace smoothing for predicted probabilities.</pre> |
---|
| 267 | * |
---|
| 268 | * <pre> -Q <seed> |
---|
| 269 | * Seed for random data shuffling (default 1).</pre> |
---|
| 270 | * |
---|
| 271 | <!-- options-end --> |
---|
| 272 | * |
---|
| 273 | * @param options the list of options as an array of strings |
---|
| 274 | * @throws Exception if an option is not supported |
---|
| 275 | */ |
---|
| 276 | public void setOptions(String[] options) throws Exception { |
---|
| 277 | |
---|
| 278 | // same for attribute evaluator |
---|
| 279 | String evaluatorString = Utils.getOption('E', options); |
---|
| 280 | if (evaluatorString.length() == 0) |
---|
| 281 | evaluatorString = weka.attributeSelection.CfsSubsetEval.class.getName(); |
---|
| 282 | String [] evaluatorSpec = Utils.splitOptions(evaluatorString); |
---|
| 283 | if (evaluatorSpec.length == 0) { |
---|
| 284 | throw new Exception("Invalid attribute evaluator specification string"); |
---|
| 285 | } |
---|
| 286 | String evaluatorName = evaluatorSpec[0]; |
---|
| 287 | evaluatorSpec[0] = ""; |
---|
| 288 | setEvaluator(ASEvaluation.forName(evaluatorName, evaluatorSpec)); |
---|
| 289 | |
---|
| 290 | // same for search method |
---|
| 291 | String searchString = Utils.getOption('S', options); |
---|
| 292 | if (searchString.length() == 0) |
---|
| 293 | searchString = weka.attributeSelection.BestFirst.class.getName(); |
---|
| 294 | String [] searchSpec = Utils.splitOptions(searchString); |
---|
| 295 | if (searchSpec.length == 0) { |
---|
| 296 | throw new Exception("Invalid search specification string"); |
---|
| 297 | } |
---|
| 298 | String searchName = searchSpec[0]; |
---|
| 299 | searchSpec[0] = ""; |
---|
| 300 | setSearch(ASSearch.forName(searchName, searchSpec)); |
---|
| 301 | |
---|
| 302 | super.setOptions(options); |
---|
| 303 | } |
---|
| 304 | |
---|
| 305 | /** |
---|
| 306 | * Gets the current settings of the Classifier. |
---|
| 307 | * |
---|
| 308 | * @return an array of strings suitable for passing to setOptions |
---|
| 309 | */ |
---|
| 310 | public String [] getOptions() { |
---|
| 311 | |
---|
| 312 | String [] superOptions = super.getOptions(); |
---|
| 313 | String [] options = new String [superOptions.length + 4]; |
---|
| 314 | |
---|
| 315 | int current = 0; |
---|
| 316 | |
---|
| 317 | // same attribute evaluator |
---|
| 318 | options[current++] = "-E"; |
---|
| 319 | options[current++] = "" +getEvaluatorSpec(); |
---|
| 320 | |
---|
| 321 | // same for search |
---|
| 322 | options[current++] = "-S"; |
---|
| 323 | options[current++] = "" + getSearchSpec(); |
---|
| 324 | |
---|
| 325 | System.arraycopy(superOptions, 0, options, current, |
---|
| 326 | superOptions.length); |
---|
| 327 | |
---|
| 328 | return options; |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | /** |
---|
| 332 | * Returns the tip text for this property |
---|
| 333 | * @return tip text for this property suitable for |
---|
| 334 | * displaying in the explorer/experimenter gui |
---|
| 335 | */ |
---|
| 336 | public String evaluatorTipText() { |
---|
| 337 | return "Set the attribute evaluator to use. This evaluator is used " |
---|
| 338 | +"during the attribute selection phase before the classifier is " |
---|
| 339 | +"invoked."; |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | /** |
---|
| 343 | * Sets the attribute evaluator |
---|
| 344 | * |
---|
| 345 | * @param evaluator the evaluator with all options set. |
---|
| 346 | */ |
---|
| 347 | public void setEvaluator(ASEvaluation evaluator) { |
---|
| 348 | m_Evaluator = evaluator; |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | /** |
---|
| 352 | * Gets the attribute evaluator used |
---|
| 353 | * |
---|
| 354 | * @return the attribute evaluator |
---|
| 355 | */ |
---|
| 356 | public ASEvaluation getEvaluator() { |
---|
| 357 | return m_Evaluator; |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | /** |
---|
| 361 | * Gets the evaluator specification string, which contains the class name of |
---|
| 362 | * the attribute evaluator and any options to it |
---|
| 363 | * |
---|
| 364 | * @return the evaluator string. |
---|
| 365 | */ |
---|
| 366 | protected String getEvaluatorSpec() { |
---|
| 367 | |
---|
| 368 | ASEvaluation e = getEvaluator(); |
---|
| 369 | if (e instanceof OptionHandler) { |
---|
| 370 | return e.getClass().getName() + " " |
---|
| 371 | + Utils.joinOptions(((OptionHandler)e).getOptions()); |
---|
| 372 | } |
---|
| 373 | return e.getClass().getName(); |
---|
| 374 | } |
---|
| 375 | |
---|
| 376 | /** |
---|
| 377 | * Returns the tip text for this property |
---|
| 378 | * @return tip text for this property suitable for |
---|
| 379 | * displaying in the explorer/experimenter gui |
---|
| 380 | */ |
---|
| 381 | public String searchTipText() { |
---|
| 382 | return "Set the search method. This search method is used " |
---|
| 383 | +"during the attribute selection phase before the classifier is " |
---|
| 384 | +"invoked."; |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | /** |
---|
| 388 | * Sets the search method |
---|
| 389 | * |
---|
| 390 | * @param search the search method with all options set. |
---|
| 391 | */ |
---|
| 392 | public void setSearch(ASSearch search) { |
---|
| 393 | m_Search = search; |
---|
| 394 | } |
---|
| 395 | |
---|
| 396 | /** |
---|
| 397 | * Gets the search method used |
---|
| 398 | * |
---|
| 399 | * @return the search method |
---|
| 400 | */ |
---|
| 401 | public ASSearch getSearch() { |
---|
| 402 | return m_Search; |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | /** |
---|
| 406 | * Gets the search specification string, which contains the class name of |
---|
| 407 | * the search method and any options to it |
---|
| 408 | * |
---|
| 409 | * @return the search string. |
---|
| 410 | */ |
---|
| 411 | protected String getSearchSpec() { |
---|
| 412 | |
---|
| 413 | ASSearch s = getSearch(); |
---|
| 414 | if (s instanceof OptionHandler) { |
---|
| 415 | return s.getClass().getName() + " " |
---|
| 416 | + Utils.joinOptions(((OptionHandler)s).getOptions()); |
---|
| 417 | } |
---|
| 418 | return s.getClass().getName(); |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | /** |
---|
| 422 | * Returns default capabilities of the classifier. |
---|
| 423 | * |
---|
| 424 | * @return the capabilities of this classifier |
---|
| 425 | */ |
---|
| 426 | public Capabilities getCapabilities() { |
---|
| 427 | Capabilities result; |
---|
| 428 | |
---|
| 429 | if (getEvaluator() == null) |
---|
| 430 | result = super.getCapabilities(); |
---|
| 431 | else |
---|
| 432 | result = getEvaluator().getCapabilities(); |
---|
| 433 | |
---|
| 434 | // set dependencies |
---|
| 435 | for (Capability cap: Capability.values()) |
---|
| 436 | result.enableDependency(cap); |
---|
| 437 | |
---|
| 438 | return result; |
---|
| 439 | } |
---|
| 440 | |
---|
| 441 | /** |
---|
| 442 | * Build the classifier on the dimensionally reduced data. |
---|
| 443 | * |
---|
| 444 | * @param data the training data |
---|
| 445 | * @throws Exception if the classifier could not be built successfully |
---|
| 446 | */ |
---|
| 447 | public void buildClassifier(Instances data) throws Exception { |
---|
| 448 | if (m_Classifier == null) { |
---|
| 449 | throw new Exception("No base classifier has been set!"); |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | if (m_Evaluator == null) { |
---|
| 453 | throw new Exception("No attribute evaluator has been set!"); |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | if (m_Search == null) { |
---|
| 457 | throw new Exception("No search method has been set!"); |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | // can classifier handle the data? |
---|
| 461 | getCapabilities().testWithFail(data); |
---|
| 462 | |
---|
| 463 | // remove instances with missing class |
---|
| 464 | Instances newData = new Instances(data); |
---|
| 465 | newData.deleteWithMissingClass(); |
---|
| 466 | |
---|
| 467 | if (newData.numInstances() == 0) { |
---|
| 468 | m_Classifier.buildClassifier(newData); |
---|
| 469 | return; |
---|
| 470 | } |
---|
| 471 | if (newData.classAttribute().isNominal()) { |
---|
| 472 | m_numClasses = newData.classAttribute().numValues(); |
---|
| 473 | } else { |
---|
| 474 | m_numClasses = 1; |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | Instances resampledData = null; |
---|
| 478 | // check to see if training data has all equal weights |
---|
| 479 | double weight = newData.instance(0).weight(); |
---|
| 480 | boolean ok = false; |
---|
| 481 | for (int i = 1; i < newData.numInstances(); i++) { |
---|
| 482 | if (newData.instance(i).weight() != weight) { |
---|
| 483 | ok = true; |
---|
| 484 | break; |
---|
| 485 | } |
---|
| 486 | } |
---|
| 487 | |
---|
| 488 | if (ok) { |
---|
| 489 | if (!(m_Evaluator instanceof WeightedInstancesHandler) || |
---|
| 490 | !(m_Classifier instanceof WeightedInstancesHandler)) { |
---|
| 491 | Random r = new Random(1); |
---|
| 492 | for (int i = 0; i < 10; i++) { |
---|
| 493 | r.nextDouble(); |
---|
| 494 | } |
---|
| 495 | resampledData = newData.resampleWithWeights(r); |
---|
| 496 | } |
---|
| 497 | } else { |
---|
| 498 | // all equal weights in the training data so just use as is |
---|
| 499 | resampledData = newData; |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | m_AttributeSelection = new AttributeSelection(); |
---|
| 503 | m_AttributeSelection.setEvaluator(m_Evaluator); |
---|
| 504 | m_AttributeSelection.setSearch(m_Search); |
---|
| 505 | long start = System.currentTimeMillis(); |
---|
| 506 | m_AttributeSelection. |
---|
| 507 | SelectAttributes((m_Evaluator instanceof WeightedInstancesHandler) |
---|
| 508 | ? newData |
---|
| 509 | : resampledData); |
---|
| 510 | long end = System.currentTimeMillis(); |
---|
| 511 | if (m_Classifier instanceof WeightedInstancesHandler) { |
---|
| 512 | newData = m_AttributeSelection.reduceDimensionality(newData); |
---|
| 513 | m_Classifier.buildClassifier(newData); |
---|
| 514 | } else { |
---|
| 515 | resampledData = m_AttributeSelection.reduceDimensionality(resampledData); |
---|
| 516 | m_Classifier.buildClassifier(resampledData); |
---|
| 517 | } |
---|
| 518 | |
---|
| 519 | long end2 = System.currentTimeMillis(); |
---|
| 520 | m_numAttributesSelected = m_AttributeSelection.numberAttributesSelected(); |
---|
| 521 | m_ReducedHeader = |
---|
| 522 | new Instances((m_Classifier instanceof WeightedInstancesHandler) ? |
---|
| 523 | newData |
---|
| 524 | : resampledData, 0); |
---|
| 525 | m_selectionTime = (double)(end - start); |
---|
| 526 | m_totalTime = (double)(end2 - start); |
---|
| 527 | } |
---|
| 528 | |
---|
| 529 | /** |
---|
| 530 | * Classifies a given instance after attribute selection |
---|
| 531 | * |
---|
| 532 | * @param instance the instance to be classified |
---|
| 533 | * @return the class distribution |
---|
| 534 | * @throws Exception if instance could not be classified |
---|
| 535 | * successfully |
---|
| 536 | */ |
---|
| 537 | public double [] distributionForInstance(Instance instance) |
---|
| 538 | throws Exception { |
---|
| 539 | |
---|
| 540 | Instance newInstance; |
---|
| 541 | if (m_AttributeSelection == null) { |
---|
| 542 | // throw new Exception("AttributeSelectedClassifier: No model built yet!"); |
---|
| 543 | newInstance = instance; |
---|
| 544 | } else { |
---|
| 545 | newInstance = m_AttributeSelection.reduceDimensionality(instance); |
---|
| 546 | } |
---|
| 547 | |
---|
| 548 | return m_Classifier.distributionForInstance(newInstance); |
---|
| 549 | } |
---|
| 550 | |
---|
| 551 | /** |
---|
| 552 | * Returns the type of graph this classifier |
---|
| 553 | * represents. |
---|
| 554 | * |
---|
| 555 | * @return the type of graph |
---|
| 556 | */ |
---|
| 557 | public int graphType() { |
---|
| 558 | |
---|
| 559 | if (m_Classifier instanceof Drawable) |
---|
| 560 | return ((Drawable)m_Classifier).graphType(); |
---|
| 561 | else |
---|
| 562 | return Drawable.NOT_DRAWABLE; |
---|
| 563 | } |
---|
| 564 | |
---|
| 565 | /** |
---|
| 566 | * Returns graph describing the classifier (if possible). |
---|
| 567 | * |
---|
| 568 | * @return the graph of the classifier in dotty format |
---|
| 569 | * @throws Exception if the classifier cannot be graphed |
---|
| 570 | */ |
---|
| 571 | public String graph() throws Exception { |
---|
| 572 | |
---|
| 573 | if (m_Classifier instanceof Drawable) |
---|
| 574 | return ((Drawable)m_Classifier).graph(); |
---|
| 575 | else throw new Exception("Classifier: " + getClassifierSpec() |
---|
| 576 | + " cannot be graphed"); |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | /** |
---|
| 580 | * Output a representation of this classifier |
---|
| 581 | * |
---|
| 582 | * @return a representation of this classifier |
---|
| 583 | */ |
---|
| 584 | public String toString() { |
---|
| 585 | if (m_AttributeSelection == null) { |
---|
| 586 | return "AttributeSelectedClassifier: No attribute selection possible.\n\n" |
---|
| 587 | +m_Classifier.toString(); |
---|
| 588 | } |
---|
| 589 | |
---|
| 590 | StringBuffer result = new StringBuffer(); |
---|
| 591 | result.append("AttributeSelectedClassifier:\n\n"); |
---|
| 592 | result.append(m_AttributeSelection.toResultsString()); |
---|
| 593 | result.append("\n\nHeader of reduced data:\n"+m_ReducedHeader.toString()); |
---|
| 594 | result.append("\n\nClassifier Model\n"+m_Classifier.toString()); |
---|
| 595 | |
---|
| 596 | return result.toString(); |
---|
| 597 | } |
---|
| 598 | |
---|
| 599 | /** |
---|
| 600 | * Additional measure --- number of attributes selected |
---|
| 601 | * @return the number of attributes selected |
---|
| 602 | */ |
---|
| 603 | public double measureNumAttributesSelected() { |
---|
| 604 | return m_numAttributesSelected; |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | /** |
---|
| 608 | * Additional measure --- time taken (milliseconds) to select the attributes |
---|
| 609 | * @return the time taken to select attributes |
---|
| 610 | */ |
---|
| 611 | public double measureSelectionTime() { |
---|
| 612 | return m_selectionTime; |
---|
| 613 | } |
---|
| 614 | |
---|
| 615 | /** |
---|
| 616 | * Additional measure --- time taken (milliseconds) to select attributes |
---|
| 617 | * and build the classifier |
---|
| 618 | * @return the total time (select attributes + build classifier) |
---|
| 619 | */ |
---|
| 620 | public double measureTime() { |
---|
| 621 | return m_totalTime; |
---|
| 622 | } |
---|
| 623 | |
---|
| 624 | /** |
---|
| 625 | * Returns an enumeration of the additional measure names |
---|
| 626 | * @return an enumeration of the measure names |
---|
| 627 | */ |
---|
| 628 | public Enumeration enumerateMeasures() { |
---|
| 629 | Vector newVector = new Vector(3); |
---|
| 630 | newVector.addElement("measureNumAttributesSelected"); |
---|
| 631 | newVector.addElement("measureSelectionTime"); |
---|
| 632 | newVector.addElement("measureTime"); |
---|
| 633 | if (m_Classifier instanceof AdditionalMeasureProducer) { |
---|
| 634 | Enumeration en = ((AdditionalMeasureProducer)m_Classifier). |
---|
| 635 | enumerateMeasures(); |
---|
| 636 | while (en.hasMoreElements()) { |
---|
| 637 | String mname = (String)en.nextElement(); |
---|
| 638 | newVector.addElement(mname); |
---|
| 639 | } |
---|
| 640 | } |
---|
| 641 | return newVector.elements(); |
---|
| 642 | } |
---|
| 643 | |
---|
| 644 | /** |
---|
| 645 | * Returns the value of the named measure |
---|
| 646 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 647 | * @return the value of the named measure |
---|
| 648 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 649 | */ |
---|
| 650 | public double getMeasure(String additionalMeasureName) { |
---|
| 651 | if (additionalMeasureName.compareToIgnoreCase("measureNumAttributesSelected") == 0) { |
---|
| 652 | return measureNumAttributesSelected(); |
---|
| 653 | } else if (additionalMeasureName.compareToIgnoreCase("measureSelectionTime") == 0) { |
---|
| 654 | return measureSelectionTime(); |
---|
| 655 | } else if (additionalMeasureName.compareToIgnoreCase("measureTime") == 0) { |
---|
| 656 | return measureTime(); |
---|
| 657 | } else if (m_Classifier instanceof AdditionalMeasureProducer) { |
---|
| 658 | return ((AdditionalMeasureProducer)m_Classifier). |
---|
| 659 | getMeasure(additionalMeasureName); |
---|
| 660 | } else { |
---|
| 661 | throw new IllegalArgumentException(additionalMeasureName |
---|
| 662 | + " not supported (AttributeSelectedClassifier)"); |
---|
| 663 | } |
---|
| 664 | } |
---|
| 665 | |
---|
| 666 | /** |
---|
| 667 | * Returns the revision string. |
---|
| 668 | * |
---|
| 669 | * @return the revision |
---|
| 670 | */ |
---|
| 671 | public String getRevision() { |
---|
| 672 | return RevisionUtils.extract("$Revision: 1.26 $"); |
---|
| 673 | } |
---|
| 674 | |
---|
| 675 | /** |
---|
| 676 | * Main method for testing this class. |
---|
| 677 | * |
---|
| 678 | * @param argv should contain the following arguments: |
---|
| 679 | * -t training file [-T test file] [-c class index] |
---|
| 680 | */ |
---|
| 681 | public static void main(String [] argv) { |
---|
| 682 | runClassifier(new AttributeSelectedClassifier(), argv); |
---|
| 683 | } |
---|
| 684 | } |
---|