1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AdaBoostM1.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
29 | import weka.classifiers.Sourcable; |
---|
30 | import weka.core.Capabilities; |
---|
31 | import weka.core.Instance; |
---|
32 | import weka.core.Instances; |
---|
33 | import weka.core.Option; |
---|
34 | import weka.core.Randomizable; |
---|
35 | import weka.core.RevisionUtils; |
---|
36 | import weka.core.TechnicalInformation; |
---|
37 | import weka.core.TechnicalInformationHandler; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.WeightedInstancesHandler; |
---|
40 | import weka.core.Capabilities.Capability; |
---|
41 | import weka.core.TechnicalInformation.Field; |
---|
42 | import weka.core.TechnicalInformation.Type; |
---|
43 | |
---|
44 | import java.util.Enumeration; |
---|
45 | import java.util.Random; |
---|
46 | import java.util.Vector; |
---|
47 | |
---|
48 | /** |
---|
49 | <!-- globalinfo-start --> |
---|
50 | * Class for boosting a nominal class classifier using the Adaboost M1 method. Only nominal class problems can be tackled. Often dramatically improves performance, but sometimes overfits.<br/> |
---|
51 | * <br/> |
---|
52 | * For more information, see<br/> |
---|
53 | * <br/> |
---|
54 | * Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996. |
---|
55 | * <p/> |
---|
56 | <!-- globalinfo-end --> |
---|
57 | * |
---|
58 | <!-- technical-bibtex-start --> |
---|
59 | * BibTeX: |
---|
60 | * <pre> |
---|
61 | * @inproceedings{Freund1996, |
---|
62 | * address = {San Francisco}, |
---|
63 | * author = {Yoav Freund and Robert E. Schapire}, |
---|
64 | * booktitle = {Thirteenth International Conference on Machine Learning}, |
---|
65 | * pages = {148-156}, |
---|
66 | * publisher = {Morgan Kaufmann}, |
---|
67 | * title = {Experiments with a new boosting algorithm}, |
---|
68 | * year = {1996} |
---|
69 | * } |
---|
70 | * </pre> |
---|
71 | * <p/> |
---|
72 | <!-- technical-bibtex-end --> |
---|
73 | * |
---|
74 | <!-- options-start --> |
---|
75 | * Valid options are: <p/> |
---|
76 | * |
---|
77 | * <pre> -P <num> |
---|
78 | * Percentage of weight mass to base training on. |
---|
79 | * (default 100, reduce to around 90 speed up)</pre> |
---|
80 | * |
---|
81 | * <pre> -Q |
---|
82 | * Use resampling for boosting.</pre> |
---|
83 | * |
---|
84 | * <pre> -S <num> |
---|
85 | * Random number seed. |
---|
86 | * (default 1)</pre> |
---|
87 | * |
---|
88 | * <pre> -I <num> |
---|
89 | * Number of iterations. |
---|
90 | * (default 10)</pre> |
---|
91 | * |
---|
92 | * <pre> -D |
---|
93 | * If set, classifier is run in debug mode and |
---|
94 | * may output additional info to the console</pre> |
---|
95 | * |
---|
96 | * <pre> -W |
---|
97 | * Full name of base classifier. |
---|
98 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
---|
99 | * |
---|
100 | * <pre> |
---|
101 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
---|
102 | * </pre> |
---|
103 | * |
---|
104 | * <pre> -D |
---|
105 | * If set, classifier is run in debug mode and |
---|
106 | * may output additional info to the console</pre> |
---|
107 | * |
---|
108 | <!-- options-end --> |
---|
109 | * |
---|
110 | * Options after -- are passed to the designated classifier.<p> |
---|
111 | * |
---|
112 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
113 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
114 | * @version $Revision: 5928 $ |
---|
115 | */ |
---|
116 | public class AdaBoostM1 |
---|
117 | extends RandomizableIteratedSingleClassifierEnhancer |
---|
118 | implements WeightedInstancesHandler, Sourcable, TechnicalInformationHandler { |
---|
119 | |
---|
120 | /** for serialization */ |
---|
121 | static final long serialVersionUID = -7378107808933117974L; |
---|
122 | |
---|
123 | /** Max num iterations tried to find classifier with non-zero error. */ |
---|
124 | private static int MAX_NUM_RESAMPLING_ITERATIONS = 10; |
---|
125 | |
---|
126 | /** Array for storing the weights for the votes. */ |
---|
127 | protected double [] m_Betas; |
---|
128 | |
---|
129 | /** The number of successfully generated base classifiers. */ |
---|
130 | protected int m_NumIterationsPerformed; |
---|
131 | |
---|
132 | /** Weight Threshold. The percentage of weight mass used in training */ |
---|
133 | protected int m_WeightThreshold = 100; |
---|
134 | |
---|
135 | /** Use boosting with reweighting? */ |
---|
136 | protected boolean m_UseResampling; |
---|
137 | |
---|
138 | /** The number of classes */ |
---|
139 | protected int m_NumClasses; |
---|
140 | |
---|
141 | /** a ZeroR model in case no model can be built from the data */ |
---|
142 | protected Classifier m_ZeroR; |
---|
143 | |
---|
144 | /** |
---|
145 | * Constructor. |
---|
146 | */ |
---|
147 | public AdaBoostM1() { |
---|
148 | |
---|
149 | m_Classifier = new weka.classifiers.trees.DecisionStump(); |
---|
150 | } |
---|
151 | |
---|
152 | /** |
---|
153 | * Returns a string describing classifier |
---|
154 | * @return a description suitable for |
---|
155 | * displaying in the explorer/experimenter gui |
---|
156 | */ |
---|
157 | public String globalInfo() { |
---|
158 | |
---|
159 | return "Class for boosting a nominal class classifier using the Adaboost " |
---|
160 | + "M1 method. Only nominal class problems can be tackled. Often " |
---|
161 | + "dramatically improves performance, but sometimes overfits.\n\n" |
---|
162 | + "For more information, see\n\n" |
---|
163 | + getTechnicalInformation().toString(); |
---|
164 | } |
---|
165 | |
---|
166 | /** |
---|
167 | * Returns an instance of a TechnicalInformation object, containing |
---|
168 | * detailed information about the technical background of this class, |
---|
169 | * e.g., paper reference or book this class is based on. |
---|
170 | * |
---|
171 | * @return the technical information about this class |
---|
172 | */ |
---|
173 | public TechnicalInformation getTechnicalInformation() { |
---|
174 | TechnicalInformation result; |
---|
175 | |
---|
176 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
177 | result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire"); |
---|
178 | result.setValue(Field.TITLE, "Experiments with a new boosting algorithm"); |
---|
179 | result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning"); |
---|
180 | result.setValue(Field.YEAR, "1996"); |
---|
181 | result.setValue(Field.PAGES, "148-156"); |
---|
182 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
183 | result.setValue(Field.ADDRESS, "San Francisco"); |
---|
184 | |
---|
185 | return result; |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * String describing default classifier. |
---|
190 | * |
---|
191 | * @return the default classifier classname |
---|
192 | */ |
---|
193 | protected String defaultClassifierString() { |
---|
194 | |
---|
195 | return "weka.classifiers.trees.DecisionStump"; |
---|
196 | } |
---|
197 | |
---|
198 | /** |
---|
199 | * Select only instances with weights that contribute to |
---|
200 | * the specified quantile of the weight distribution |
---|
201 | * |
---|
202 | * @param data the input instances |
---|
203 | * @param quantile the specified quantile eg 0.9 to select |
---|
204 | * 90% of the weight mass |
---|
205 | * @return the selected instances |
---|
206 | */ |
---|
207 | protected Instances selectWeightQuantile(Instances data, double quantile) { |
---|
208 | |
---|
209 | int numInstances = data.numInstances(); |
---|
210 | Instances trainData = new Instances(data, numInstances); |
---|
211 | double [] weights = new double [numInstances]; |
---|
212 | |
---|
213 | double sumOfWeights = 0; |
---|
214 | for(int i = 0; i < numInstances; i++) { |
---|
215 | weights[i] = data.instance(i).weight(); |
---|
216 | sumOfWeights += weights[i]; |
---|
217 | } |
---|
218 | double weightMassToSelect = sumOfWeights * quantile; |
---|
219 | int [] sortedIndices = Utils.sort(weights); |
---|
220 | |
---|
221 | // Select the instances |
---|
222 | sumOfWeights = 0; |
---|
223 | for(int i = numInstances - 1; i >= 0; i--) { |
---|
224 | Instance instance = (Instance)data.instance(sortedIndices[i]).copy(); |
---|
225 | trainData.add(instance); |
---|
226 | sumOfWeights += weights[sortedIndices[i]]; |
---|
227 | if ((sumOfWeights > weightMassToSelect) && |
---|
228 | (i > 0) && |
---|
229 | (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) { |
---|
230 | break; |
---|
231 | } |
---|
232 | } |
---|
233 | if (m_Debug) { |
---|
234 | System.err.println("Selected " + trainData.numInstances() |
---|
235 | + " out of " + numInstances); |
---|
236 | } |
---|
237 | return trainData; |
---|
238 | } |
---|
239 | |
---|
240 | /** |
---|
241 | * Returns an enumeration describing the available options. |
---|
242 | * |
---|
243 | * @return an enumeration of all the available options. |
---|
244 | */ |
---|
245 | public Enumeration listOptions() { |
---|
246 | |
---|
247 | Vector newVector = new Vector(); |
---|
248 | |
---|
249 | newVector.addElement(new Option( |
---|
250 | "\tPercentage of weight mass to base training on.\n" |
---|
251 | +"\t(default 100, reduce to around 90 speed up)", |
---|
252 | "P", 1, "-P <num>")); |
---|
253 | |
---|
254 | newVector.addElement(new Option( |
---|
255 | "\tUse resampling for boosting.", |
---|
256 | "Q", 0, "-Q")); |
---|
257 | |
---|
258 | Enumeration enu = super.listOptions(); |
---|
259 | while (enu.hasMoreElements()) { |
---|
260 | newVector.addElement(enu.nextElement()); |
---|
261 | } |
---|
262 | |
---|
263 | return newVector.elements(); |
---|
264 | } |
---|
265 | |
---|
266 | |
---|
267 | /** |
---|
268 | * Parses a given list of options. <p/> |
---|
269 | * |
---|
270 | <!-- options-start --> |
---|
271 | * Valid options are: <p/> |
---|
272 | * |
---|
273 | * <pre> -P <num> |
---|
274 | * Percentage of weight mass to base training on. |
---|
275 | * (default 100, reduce to around 90 speed up)</pre> |
---|
276 | * |
---|
277 | * <pre> -Q |
---|
278 | * Use resampling for boosting.</pre> |
---|
279 | * |
---|
280 | * <pre> -S <num> |
---|
281 | * Random number seed. |
---|
282 | * (default 1)</pre> |
---|
283 | * |
---|
284 | * <pre> -I <num> |
---|
285 | * Number of iterations. |
---|
286 | * (default 10)</pre> |
---|
287 | * |
---|
288 | * <pre> -D |
---|
289 | * If set, classifier is run in debug mode and |
---|
290 | * may output additional info to the console</pre> |
---|
291 | * |
---|
292 | * <pre> -W |
---|
293 | * Full name of base classifier. |
---|
294 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
---|
295 | * |
---|
296 | * <pre> |
---|
297 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
---|
298 | * </pre> |
---|
299 | * |
---|
300 | * <pre> -D |
---|
301 | * If set, classifier is run in debug mode and |
---|
302 | * may output additional info to the console</pre> |
---|
303 | * |
---|
304 | <!-- options-end --> |
---|
305 | * |
---|
306 | * Options after -- are passed to the designated classifier.<p> |
---|
307 | * |
---|
308 | * @param options the list of options as an array of strings |
---|
309 | * @throws Exception if an option is not supported |
---|
310 | */ |
---|
311 | public void setOptions(String[] options) throws Exception { |
---|
312 | |
---|
313 | String thresholdString = Utils.getOption('P', options); |
---|
314 | if (thresholdString.length() != 0) { |
---|
315 | setWeightThreshold(Integer.parseInt(thresholdString)); |
---|
316 | } else { |
---|
317 | setWeightThreshold(100); |
---|
318 | } |
---|
319 | |
---|
320 | setUseResampling(Utils.getFlag('Q', options)); |
---|
321 | |
---|
322 | super.setOptions(options); |
---|
323 | } |
---|
324 | |
---|
325 | /** |
---|
326 | * Gets the current settings of the Classifier. |
---|
327 | * |
---|
328 | * @return an array of strings suitable for passing to setOptions |
---|
329 | */ |
---|
330 | public String[] getOptions() { |
---|
331 | Vector result; |
---|
332 | String[] options; |
---|
333 | int i; |
---|
334 | |
---|
335 | result = new Vector(); |
---|
336 | |
---|
337 | if (getUseResampling()) |
---|
338 | result.add("-Q"); |
---|
339 | |
---|
340 | result.add("-P"); |
---|
341 | result.add("" + getWeightThreshold()); |
---|
342 | |
---|
343 | options = super.getOptions(); |
---|
344 | for (i = 0; i < options.length; i++) |
---|
345 | result.add(options[i]); |
---|
346 | |
---|
347 | return (String[]) result.toArray(new String[result.size()]); |
---|
348 | } |
---|
349 | |
---|
350 | /** |
---|
351 | * Returns the tip text for this property |
---|
352 | * @return tip text for this property suitable for |
---|
353 | * displaying in the explorer/experimenter gui |
---|
354 | */ |
---|
355 | public String weightThresholdTipText() { |
---|
356 | return "Weight threshold for weight pruning."; |
---|
357 | } |
---|
358 | |
---|
359 | /** |
---|
360 | * Set weight threshold |
---|
361 | * |
---|
362 | * @param threshold the percentage of weight mass used for training |
---|
363 | */ |
---|
364 | public void setWeightThreshold(int threshold) { |
---|
365 | |
---|
366 | m_WeightThreshold = threshold; |
---|
367 | } |
---|
368 | |
---|
369 | /** |
---|
370 | * Get the degree of weight thresholding |
---|
371 | * |
---|
372 | * @return the percentage of weight mass used for training |
---|
373 | */ |
---|
374 | public int getWeightThreshold() { |
---|
375 | |
---|
376 | return m_WeightThreshold; |
---|
377 | } |
---|
378 | |
---|
379 | /** |
---|
380 | * Returns the tip text for this property |
---|
381 | * @return tip text for this property suitable for |
---|
382 | * displaying in the explorer/experimenter gui |
---|
383 | */ |
---|
384 | public String useResamplingTipText() { |
---|
385 | return "Whether resampling is used instead of reweighting."; |
---|
386 | } |
---|
387 | |
---|
388 | /** |
---|
389 | * Set resampling mode |
---|
390 | * |
---|
391 | * @param r true if resampling should be done |
---|
392 | */ |
---|
393 | public void setUseResampling(boolean r) { |
---|
394 | |
---|
395 | m_UseResampling = r; |
---|
396 | } |
---|
397 | |
---|
398 | /** |
---|
399 | * Get whether resampling is turned on |
---|
400 | * |
---|
401 | * @return true if resampling output is on |
---|
402 | */ |
---|
403 | public boolean getUseResampling() { |
---|
404 | |
---|
405 | return m_UseResampling; |
---|
406 | } |
---|
407 | |
---|
408 | /** |
---|
409 | * Returns default capabilities of the classifier. |
---|
410 | * |
---|
411 | * @return the capabilities of this classifier |
---|
412 | */ |
---|
413 | public Capabilities getCapabilities() { |
---|
414 | Capabilities result = super.getCapabilities(); |
---|
415 | |
---|
416 | // class |
---|
417 | result.disableAllClasses(); |
---|
418 | result.disableAllClassDependencies(); |
---|
419 | if (super.getCapabilities().handles(Capability.NOMINAL_CLASS)) |
---|
420 | result.enable(Capability.NOMINAL_CLASS); |
---|
421 | if (super.getCapabilities().handles(Capability.BINARY_CLASS)) |
---|
422 | result.enable(Capability.BINARY_CLASS); |
---|
423 | |
---|
424 | return result; |
---|
425 | } |
---|
426 | |
---|
427 | /** |
---|
428 | * Boosting method. |
---|
429 | * |
---|
430 | * @param data the training data to be used for generating the |
---|
431 | * boosted classifier. |
---|
432 | * @throws Exception if the classifier could not be built successfully |
---|
433 | */ |
---|
434 | |
---|
435 | public void buildClassifier(Instances data) throws Exception { |
---|
436 | |
---|
437 | super.buildClassifier(data); |
---|
438 | |
---|
439 | // can classifier handle the data? |
---|
440 | getCapabilities().testWithFail(data); |
---|
441 | |
---|
442 | // remove instances with missing class |
---|
443 | data = new Instances(data); |
---|
444 | data.deleteWithMissingClass(); |
---|
445 | |
---|
446 | // only class? -> build ZeroR model |
---|
447 | if (data.numAttributes() == 1) { |
---|
448 | System.err.println( |
---|
449 | "Cannot build model (only class attribute present in data!), " |
---|
450 | + "using ZeroR model instead!"); |
---|
451 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
452 | m_ZeroR.buildClassifier(data); |
---|
453 | return; |
---|
454 | } |
---|
455 | else { |
---|
456 | m_ZeroR = null; |
---|
457 | } |
---|
458 | |
---|
459 | m_NumClasses = data.numClasses(); |
---|
460 | if ((!m_UseResampling) && |
---|
461 | (m_Classifier instanceof WeightedInstancesHandler)) { |
---|
462 | buildClassifierWithWeights(data); |
---|
463 | } else { |
---|
464 | buildClassifierUsingResampling(data); |
---|
465 | } |
---|
466 | } |
---|
467 | |
---|
468 | /** |
---|
469 | * Boosting method. Boosts using resampling |
---|
470 | * |
---|
471 | * @param data the training data to be used for generating the |
---|
472 | * boosted classifier. |
---|
473 | * @throws Exception if the classifier could not be built successfully |
---|
474 | */ |
---|
475 | protected void buildClassifierUsingResampling(Instances data) |
---|
476 | throws Exception { |
---|
477 | |
---|
478 | Instances trainData, sample, training; |
---|
479 | double epsilon, reweight, sumProbs; |
---|
480 | Evaluation evaluation; |
---|
481 | int numInstances = data.numInstances(); |
---|
482 | Random randomInstance = new Random(m_Seed); |
---|
483 | int resamplingIterations = 0; |
---|
484 | |
---|
485 | // Initialize data |
---|
486 | m_Betas = new double [m_Classifiers.length]; |
---|
487 | m_NumIterationsPerformed = 0; |
---|
488 | // Create a copy of the data so that when the weights are diddled |
---|
489 | // with it doesn't mess up the weights for anyone else |
---|
490 | training = new Instances(data, 0, numInstances); |
---|
491 | sumProbs = training.sumOfWeights(); |
---|
492 | for (int i = 0; i < training.numInstances(); i++) { |
---|
493 | training.instance(i).setWeight(training.instance(i). |
---|
494 | weight() / sumProbs); |
---|
495 | } |
---|
496 | |
---|
497 | // Do boostrap iterations |
---|
498 | for (m_NumIterationsPerformed = 0; m_NumIterationsPerformed < m_Classifiers.length; |
---|
499 | m_NumIterationsPerformed++) { |
---|
500 | if (m_Debug) { |
---|
501 | System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); |
---|
502 | } |
---|
503 | |
---|
504 | // Select instances to train the classifier on |
---|
505 | if (m_WeightThreshold < 100) { |
---|
506 | trainData = selectWeightQuantile(training, |
---|
507 | (double)m_WeightThreshold / 100); |
---|
508 | } else { |
---|
509 | trainData = new Instances(training); |
---|
510 | } |
---|
511 | |
---|
512 | // Resample |
---|
513 | resamplingIterations = 0; |
---|
514 | double[] weights = new double[trainData.numInstances()]; |
---|
515 | for (int i = 0; i < weights.length; i++) { |
---|
516 | weights[i] = trainData.instance(i).weight(); |
---|
517 | } |
---|
518 | do { |
---|
519 | sample = trainData.resampleWithWeights(randomInstance, weights); |
---|
520 | |
---|
521 | // Build and evaluate classifier |
---|
522 | m_Classifiers[m_NumIterationsPerformed].buildClassifier(sample); |
---|
523 | evaluation = new Evaluation(data); |
---|
524 | evaluation.evaluateModel(m_Classifiers[m_NumIterationsPerformed], |
---|
525 | training); |
---|
526 | epsilon = evaluation.errorRate(); |
---|
527 | resamplingIterations++; |
---|
528 | } while (Utils.eq(epsilon, 0) && |
---|
529 | (resamplingIterations < MAX_NUM_RESAMPLING_ITERATIONS)); |
---|
530 | |
---|
531 | // Stop if error too big or 0 |
---|
532 | if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) { |
---|
533 | if (m_NumIterationsPerformed == 0) { |
---|
534 | m_NumIterationsPerformed = 1; // If we're the first we have to to use it |
---|
535 | } |
---|
536 | break; |
---|
537 | } |
---|
538 | |
---|
539 | // Determine the weight to assign to this model |
---|
540 | m_Betas[m_NumIterationsPerformed] = Math.log((1 - epsilon) / epsilon); |
---|
541 | reweight = (1 - epsilon) / epsilon; |
---|
542 | if (m_Debug) { |
---|
543 | System.err.println("\terror rate = " + epsilon |
---|
544 | +" beta = " + m_Betas[m_NumIterationsPerformed]); |
---|
545 | } |
---|
546 | |
---|
547 | // Update instance weights |
---|
548 | setWeights(training, reweight); |
---|
549 | } |
---|
550 | } |
---|
551 | |
---|
552 | /** |
---|
553 | * Sets the weights for the next iteration. |
---|
554 | * |
---|
555 | * @param training the training instances |
---|
556 | * @param reweight the reweighting factor |
---|
557 | * @throws Exception if something goes wrong |
---|
558 | */ |
---|
559 | protected void setWeights(Instances training, double reweight) |
---|
560 | throws Exception { |
---|
561 | |
---|
562 | double oldSumOfWeights, newSumOfWeights; |
---|
563 | |
---|
564 | oldSumOfWeights = training.sumOfWeights(); |
---|
565 | Enumeration enu = training.enumerateInstances(); |
---|
566 | while (enu.hasMoreElements()) { |
---|
567 | Instance instance = (Instance) enu.nextElement(); |
---|
568 | if (!Utils.eq(m_Classifiers[m_NumIterationsPerformed].classifyInstance(instance), |
---|
569 | instance.classValue())) |
---|
570 | instance.setWeight(instance.weight() * reweight); |
---|
571 | } |
---|
572 | |
---|
573 | // Renormalize weights |
---|
574 | newSumOfWeights = training.sumOfWeights(); |
---|
575 | enu = training.enumerateInstances(); |
---|
576 | while (enu.hasMoreElements()) { |
---|
577 | Instance instance = (Instance) enu.nextElement(); |
---|
578 | instance.setWeight(instance.weight() * oldSumOfWeights |
---|
579 | / newSumOfWeights); |
---|
580 | } |
---|
581 | } |
---|
582 | |
---|
583 | /** |
---|
584 | * Boosting method. Boosts any classifier that can handle weighted |
---|
585 | * instances. |
---|
586 | * |
---|
587 | * @param data the training data to be used for generating the |
---|
588 | * boosted classifier. |
---|
589 | * @throws Exception if the classifier could not be built successfully |
---|
590 | */ |
---|
591 | protected void buildClassifierWithWeights(Instances data) |
---|
592 | throws Exception { |
---|
593 | |
---|
594 | Instances trainData, training; |
---|
595 | double epsilon, reweight; |
---|
596 | Evaluation evaluation; |
---|
597 | int numInstances = data.numInstances(); |
---|
598 | Random randomInstance = new Random(m_Seed); |
---|
599 | |
---|
600 | // Initialize data |
---|
601 | m_Betas = new double [m_Classifiers.length]; |
---|
602 | m_NumIterationsPerformed = 0; |
---|
603 | |
---|
604 | // Create a copy of the data so that when the weights are diddled |
---|
605 | // with it doesn't mess up the weights for anyone else |
---|
606 | training = new Instances(data, 0, numInstances); |
---|
607 | |
---|
608 | // Do boostrap iterations |
---|
609 | for (m_NumIterationsPerformed = 0; m_NumIterationsPerformed < m_Classifiers.length; |
---|
610 | m_NumIterationsPerformed++) { |
---|
611 | if (m_Debug) { |
---|
612 | System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); |
---|
613 | } |
---|
614 | // Select instances to train the classifier on |
---|
615 | if (m_WeightThreshold < 100) { |
---|
616 | trainData = selectWeightQuantile(training, |
---|
617 | (double)m_WeightThreshold / 100); |
---|
618 | } else { |
---|
619 | trainData = new Instances(training, 0, numInstances); |
---|
620 | } |
---|
621 | |
---|
622 | // Build the classifier |
---|
623 | if (m_Classifiers[m_NumIterationsPerformed] instanceof Randomizable) |
---|
624 | ((Randomizable) m_Classifiers[m_NumIterationsPerformed]).setSeed(randomInstance.nextInt()); |
---|
625 | m_Classifiers[m_NumIterationsPerformed].buildClassifier(trainData); |
---|
626 | |
---|
627 | // Evaluate the classifier |
---|
628 | evaluation = new Evaluation(data); |
---|
629 | evaluation.evaluateModel(m_Classifiers[m_NumIterationsPerformed], training); |
---|
630 | epsilon = evaluation.errorRate(); |
---|
631 | |
---|
632 | // Stop if error too small or error too big and ignore this model |
---|
633 | if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) { |
---|
634 | if (m_NumIterationsPerformed == 0) { |
---|
635 | m_NumIterationsPerformed = 1; // If we're the first we have to to use it |
---|
636 | } |
---|
637 | break; |
---|
638 | } |
---|
639 | // Determine the weight to assign to this model |
---|
640 | m_Betas[m_NumIterationsPerformed] = Math.log((1 - epsilon) / epsilon); |
---|
641 | reweight = (1 - epsilon) / epsilon; |
---|
642 | if (m_Debug) { |
---|
643 | System.err.println("\terror rate = " + epsilon |
---|
644 | +" beta = " + m_Betas[m_NumIterationsPerformed]); |
---|
645 | } |
---|
646 | |
---|
647 | // Update instance weights |
---|
648 | setWeights(training, reweight); |
---|
649 | } |
---|
650 | } |
---|
651 | |
---|
652 | /** |
---|
653 | * Calculates the class membership probabilities for the given test instance. |
---|
654 | * |
---|
655 | * @param instance the instance to be classified |
---|
656 | * @return predicted class probability distribution |
---|
657 | * @throws Exception if instance could not be classified |
---|
658 | * successfully |
---|
659 | */ |
---|
660 | public double [] distributionForInstance(Instance instance) |
---|
661 | throws Exception { |
---|
662 | |
---|
663 | // default model? |
---|
664 | if (m_ZeroR != null) { |
---|
665 | return m_ZeroR.distributionForInstance(instance); |
---|
666 | } |
---|
667 | |
---|
668 | if (m_NumIterationsPerformed == 0) { |
---|
669 | throw new Exception("No model built"); |
---|
670 | } |
---|
671 | double [] sums = new double [instance.numClasses()]; |
---|
672 | |
---|
673 | if (m_NumIterationsPerformed == 1) { |
---|
674 | return m_Classifiers[0].distributionForInstance(instance); |
---|
675 | } else { |
---|
676 | for (int i = 0; i < m_NumIterationsPerformed; i++) { |
---|
677 | sums[(int)m_Classifiers[i].classifyInstance(instance)] += m_Betas[i]; |
---|
678 | } |
---|
679 | return Utils.logs2probs(sums); |
---|
680 | } |
---|
681 | } |
---|
682 | |
---|
683 | /** |
---|
684 | * Returns the boosted model as Java source code. |
---|
685 | * |
---|
686 | * @param className the classname of the generated class |
---|
687 | * @return the tree as Java source code |
---|
688 | * @throws Exception if something goes wrong |
---|
689 | */ |
---|
690 | public String toSource(String className) throws Exception { |
---|
691 | |
---|
692 | if (m_NumIterationsPerformed == 0) { |
---|
693 | throw new Exception("No model built yet"); |
---|
694 | } |
---|
695 | if (!(m_Classifiers[0] instanceof Sourcable)) { |
---|
696 | throw new Exception("Base learner " + m_Classifier.getClass().getName() |
---|
697 | + " is not Sourcable"); |
---|
698 | } |
---|
699 | |
---|
700 | StringBuffer text = new StringBuffer("class "); |
---|
701 | text.append(className).append(" {\n\n"); |
---|
702 | |
---|
703 | text.append(" public static double classify(Object[] i) {\n"); |
---|
704 | |
---|
705 | if (m_NumIterationsPerformed == 1) { |
---|
706 | text.append(" return " + className + "_0.classify(i);\n"); |
---|
707 | } else { |
---|
708 | text.append(" double [] sums = new double [" + m_NumClasses + "];\n"); |
---|
709 | for (int i = 0; i < m_NumIterationsPerformed; i++) { |
---|
710 | text.append(" sums[(int) " + className + '_' + i |
---|
711 | + ".classify(i)] += " + m_Betas[i] + ";\n"); |
---|
712 | } |
---|
713 | text.append(" double maxV = sums[0];\n" + |
---|
714 | " int maxI = 0;\n"+ |
---|
715 | " for (int j = 1; j < " + m_NumClasses + "; j++) {\n"+ |
---|
716 | " if (sums[j] > maxV) { maxV = sums[j]; maxI = j; }\n"+ |
---|
717 | " }\n return (double) maxI;\n"); |
---|
718 | } |
---|
719 | text.append(" }\n}\n"); |
---|
720 | |
---|
721 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
722 | text.append(((Sourcable)m_Classifiers[i]) |
---|
723 | .toSource(className + '_' + i)); |
---|
724 | } |
---|
725 | return text.toString(); |
---|
726 | } |
---|
727 | |
---|
728 | /** |
---|
729 | * Returns description of the boosted classifier. |
---|
730 | * |
---|
731 | * @return description of the boosted classifier as a string |
---|
732 | */ |
---|
733 | public String toString() { |
---|
734 | |
---|
735 | // only ZeroR model? |
---|
736 | if (m_ZeroR != null) { |
---|
737 | StringBuffer buf = new StringBuffer(); |
---|
738 | buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
739 | buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
740 | buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
741 | buf.append(m_ZeroR.toString()); |
---|
742 | return buf.toString(); |
---|
743 | } |
---|
744 | |
---|
745 | StringBuffer text = new StringBuffer(); |
---|
746 | |
---|
747 | if (m_NumIterationsPerformed == 0) { |
---|
748 | text.append("AdaBoostM1: No model built yet.\n"); |
---|
749 | } else if (m_NumIterationsPerformed == 1) { |
---|
750 | text.append("AdaBoostM1: No boosting possible, one classifier used!\n"); |
---|
751 | text.append(m_Classifiers[0].toString() + "\n"); |
---|
752 | } else { |
---|
753 | text.append("AdaBoostM1: Base classifiers and their weights: \n\n"); |
---|
754 | for (int i = 0; i < m_NumIterationsPerformed ; i++) { |
---|
755 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
756 | text.append("Weight: " + Utils.roundDouble(m_Betas[i], 2) + "\n\n"); |
---|
757 | } |
---|
758 | text.append("Number of performed Iterations: " |
---|
759 | + m_NumIterationsPerformed + "\n"); |
---|
760 | } |
---|
761 | |
---|
762 | return text.toString(); |
---|
763 | } |
---|
764 | |
---|
765 | /** |
---|
766 | * Returns the revision string. |
---|
767 | * |
---|
768 | * @return the revision |
---|
769 | */ |
---|
770 | public String getRevision() { |
---|
771 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
772 | } |
---|
773 | |
---|
774 | /** |
---|
775 | * Main method for testing this class. |
---|
776 | * |
---|
777 | * @param argv the options |
---|
778 | */ |
---|
779 | public static void main(String [] argv) { |
---|
780 | runClassifier(new AdaBoostM1(), argv); |
---|
781 | } |
---|
782 | } |
---|