/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* AdaBoostM1.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.meta;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;
import weka.classifiers.Sourcable;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Randomizable;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
/**
* Class for boosting a nominal class classifier using the Adaboost M1 method. Only nominal class problems can be tackled. Often dramatically improves performance, but sometimes overfits.
*
* For more information, see
*
* Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.
*
* @inproceedings{Freund1996, * address = {San Francisco}, * author = {Yoav Freund and Robert E. Schapire}, * booktitle = {Thirteenth International Conference on Machine Learning}, * pages = {148-156}, * publisher = {Morgan Kaufmann}, * title = {Experiments with a new boosting algorithm}, * year = {1996} * } ** * * Valid options are: * *
-P <num> * Percentage of weight mass to base training on. * (default 100, reduce to around 90 speed up)* *
-Q * Use resampling for boosting.* *
-S <num> * Random number seed. * (default 1)* *
-I <num> * Number of iterations. * (default 10)* *
-D * If set, classifier is run in debug mode and * may output additional info to the console* *
-W * Full name of base classifier. * (default: weka.classifiers.trees.DecisionStump)* *
* Options specific to classifier weka.classifiers.trees.DecisionStump: ** *
-D * If set, classifier is run in debug mode and * may output additional info to the console* * * Options after -- are passed to the designated classifier.
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @author Len Trigg (trigg@cs.waikato.ac.nz)
* @version $Revision: 5928 $
*/
public class AdaBoostM1
extends RandomizableIteratedSingleClassifierEnhancer
implements WeightedInstancesHandler, Sourcable, TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -7378107808933117974L;
/** Max num iterations tried to find classifier with non-zero error. */
private static int MAX_NUM_RESAMPLING_ITERATIONS = 10;
/** Array for storing the weights for the votes. */
protected double [] m_Betas;
/** The number of successfully generated base classifiers. */
protected int m_NumIterationsPerformed;
/** Weight Threshold. The percentage of weight mass used in training */
protected int m_WeightThreshold = 100;
/** Use boosting with reweighting? */
protected boolean m_UseResampling;
/** The number of classes */
protected int m_NumClasses;
/** a ZeroR model in case no model can be built from the data */
protected Classifier m_ZeroR;
/**
* Constructor.
*/
public AdaBoostM1() {
m_Classifier = new weka.classifiers.trees.DecisionStump();
}
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for boosting a nominal class classifier using the Adaboost "
+ "M1 method. Only nominal class problems can be tackled. Often "
+ "dramatically improves performance, but sometimes overfits.\n\n"
+ "For more information, see\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire");
result.setValue(Field.TITLE, "Experiments with a new boosting algorithm");
result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning");
result.setValue(Field.YEAR, "1996");
result.setValue(Field.PAGES, "148-156");
result.setValue(Field.PUBLISHER, "Morgan Kaufmann");
result.setValue(Field.ADDRESS, "San Francisco");
return result;
}
/**
* String describing default classifier.
*
* @return the default classifier classname
*/
protected String defaultClassifierString() {
return "weka.classifiers.trees.DecisionStump";
}
/**
* Select only instances with weights that contribute to
* the specified quantile of the weight distribution
*
* @param data the input instances
* @param quantile the specified quantile eg 0.9 to select
* 90% of the weight mass
* @return the selected instances
*/
protected Instances selectWeightQuantile(Instances data, double quantile) {
int numInstances = data.numInstances();
Instances trainData = new Instances(data, numInstances);
double [] weights = new double [numInstances];
double sumOfWeights = 0;
for(int i = 0; i < numInstances; i++) {
weights[i] = data.instance(i).weight();
sumOfWeights += weights[i];
}
double weightMassToSelect = sumOfWeights * quantile;
int [] sortedIndices = Utils.sort(weights);
// Select the instances
sumOfWeights = 0;
for(int i = numInstances - 1; i >= 0; i--) {
Instance instance = (Instance)data.instance(sortedIndices[i]).copy();
trainData.add(instance);
sumOfWeights += weights[sortedIndices[i]];
if ((sumOfWeights > weightMassToSelect) &&
(i > 0) &&
(weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) {
break;
}
}
if (m_Debug) {
System.err.println("Selected " + trainData.numInstances()
+ " out of " + numInstances);
}
return trainData;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector();
newVector.addElement(new Option(
"\tPercentage of weight mass to base training on.\n"
+"\t(default 100, reduce to around 90 speed up)",
"P", 1, "-P
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String thresholdString = Utils.getOption('P', options);
if (thresholdString.length() != 0) {
setWeightThreshold(Integer.parseInt(thresholdString));
} else {
setWeightThreshold(100);
}
setUseResampling(Utils.getFlag('Q', options));
super.setOptions(options);
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
Vector result;
String[] options;
int i;
result = new Vector();
if (getUseResampling())
result.add("-Q");
result.add("-P");
result.add("" + getWeightThreshold());
options = super.getOptions();
for (i = 0; i < options.length; i++)
result.add(options[i]);
return (String[]) result.toArray(new String[result.size()]);
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String weightThresholdTipText() {
return "Weight threshold for weight pruning.";
}
/**
* Set weight threshold
*
* @param threshold the percentage of weight mass used for training
*/
public void setWeightThreshold(int threshold) {
m_WeightThreshold = threshold;
}
/**
* Get the degree of weight thresholding
*
* @return the percentage of weight mass used for training
*/
public int getWeightThreshold() {
return m_WeightThreshold;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String useResamplingTipText() {
return "Whether resampling is used instead of reweighting.";
}
/**
* Set resampling mode
*
* @param r true if resampling should be done
*/
public void setUseResampling(boolean r) {
m_UseResampling = r;
}
/**
* Get whether resampling is turned on
*
* @return true if resampling output is on
*/
public boolean getUseResampling() {
return m_UseResampling;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
// class
result.disableAllClasses();
result.disableAllClassDependencies();
if (super.getCapabilities().handles(Capability.NOMINAL_CLASS))
result.enable(Capability.NOMINAL_CLASS);
if (super.getCapabilities().handles(Capability.BINARY_CLASS))
result.enable(Capability.BINARY_CLASS);
return result;
}
/**
* Boosting method.
*
* @param data the training data to be used for generating the
* boosted classifier.
* @throws Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
super.buildClassifier(data);
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
data = new Instances(data);
data.deleteWithMissingClass();
// only class? -> build ZeroR model
if (data.numAttributes() == 1) {
System.err.println(
"Cannot build model (only class attribute present in data!), "
+ "using ZeroR model instead!");
m_ZeroR = new weka.classifiers.rules.ZeroR();
m_ZeroR.buildClassifier(data);
return;
}
else {
m_ZeroR = null;
}
m_NumClasses = data.numClasses();
if ((!m_UseResampling) &&
(m_Classifier instanceof WeightedInstancesHandler)) {
buildClassifierWithWeights(data);
} else {
buildClassifierUsingResampling(data);
}
}
/**
* Boosting method. Boosts using resampling
*
* @param data the training data to be used for generating the
* boosted classifier.
* @throws Exception if the classifier could not be built successfully
*/
protected void buildClassifierUsingResampling(Instances data)
throws Exception {
Instances trainData, sample, training;
double epsilon, reweight, sumProbs;
Evaluation evaluation;
int numInstances = data.numInstances();
Random randomInstance = new Random(m_Seed);
int resamplingIterations = 0;
// Initialize data
m_Betas = new double [m_Classifiers.length];
m_NumIterationsPerformed = 0;
// Create a copy of the data so that when the weights are diddled
// with it doesn't mess up the weights for anyone else
training = new Instances(data, 0, numInstances);
sumProbs = training.sumOfWeights();
for (int i = 0; i < training.numInstances(); i++) {
training.instance(i).setWeight(training.instance(i).
weight() / sumProbs);
}
// Do boostrap iterations
for (m_NumIterationsPerformed = 0; m_NumIterationsPerformed < m_Classifiers.length;
m_NumIterationsPerformed++) {
if (m_Debug) {
System.err.println("Training classifier " + (m_NumIterationsPerformed + 1));
}
// Select instances to train the classifier on
if (m_WeightThreshold < 100) {
trainData = selectWeightQuantile(training,
(double)m_WeightThreshold / 100);
} else {
trainData = new Instances(training);
}
// Resample
resamplingIterations = 0;
double[] weights = new double[trainData.numInstances()];
for (int i = 0; i < weights.length; i++) {
weights[i] = trainData.instance(i).weight();
}
do {
sample = trainData.resampleWithWeights(randomInstance, weights);
// Build and evaluate classifier
m_Classifiers[m_NumIterationsPerformed].buildClassifier(sample);
evaluation = new Evaluation(data);
evaluation.evaluateModel(m_Classifiers[m_NumIterationsPerformed],
training);
epsilon = evaluation.errorRate();
resamplingIterations++;
} while (Utils.eq(epsilon, 0) &&
(resamplingIterations < MAX_NUM_RESAMPLING_ITERATIONS));
// Stop if error too big or 0
if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) {
if (m_NumIterationsPerformed == 0) {
m_NumIterationsPerformed = 1; // If we're the first we have to to use it
}
break;
}
// Determine the weight to assign to this model
m_Betas[m_NumIterationsPerformed] = Math.log((1 - epsilon) / epsilon);
reweight = (1 - epsilon) / epsilon;
if (m_Debug) {
System.err.println("\terror rate = " + epsilon
+" beta = " + m_Betas[m_NumIterationsPerformed]);
}
// Update instance weights
setWeights(training, reweight);
}
}
/**
* Sets the weights for the next iteration.
*
* @param training the training instances
* @param reweight the reweighting factor
* @throws Exception if something goes wrong
*/
protected void setWeights(Instances training, double reweight)
throws Exception {
double oldSumOfWeights, newSumOfWeights;
oldSumOfWeights = training.sumOfWeights();
Enumeration enu = training.enumerateInstances();
while (enu.hasMoreElements()) {
Instance instance = (Instance) enu.nextElement();
if (!Utils.eq(m_Classifiers[m_NumIterationsPerformed].classifyInstance(instance),
instance.classValue()))
instance.setWeight(instance.weight() * reweight);
}
// Renormalize weights
newSumOfWeights = training.sumOfWeights();
enu = training.enumerateInstances();
while (enu.hasMoreElements()) {
Instance instance = (Instance) enu.nextElement();
instance.setWeight(instance.weight() * oldSumOfWeights
/ newSumOfWeights);
}
}
/**
* Boosting method. Boosts any classifier that can handle weighted
* instances.
*
* @param data the training data to be used for generating the
* boosted classifier.
* @throws Exception if the classifier could not be built successfully
*/
protected void buildClassifierWithWeights(Instances data)
throws Exception {
Instances trainData, training;
double epsilon, reweight;
Evaluation evaluation;
int numInstances = data.numInstances();
Random randomInstance = new Random(m_Seed);
// Initialize data
m_Betas = new double [m_Classifiers.length];
m_NumIterationsPerformed = 0;
// Create a copy of the data so that when the weights are diddled
// with it doesn't mess up the weights for anyone else
training = new Instances(data, 0, numInstances);
// Do boostrap iterations
for (m_NumIterationsPerformed = 0; m_NumIterationsPerformed < m_Classifiers.length;
m_NumIterationsPerformed++) {
if (m_Debug) {
System.err.println("Training classifier " + (m_NumIterationsPerformed + 1));
}
// Select instances to train the classifier on
if (m_WeightThreshold < 100) {
trainData = selectWeightQuantile(training,
(double)m_WeightThreshold / 100);
} else {
trainData = new Instances(training, 0, numInstances);
}
// Build the classifier
if (m_Classifiers[m_NumIterationsPerformed] instanceof Randomizable)
((Randomizable) m_Classifiers[m_NumIterationsPerformed]).setSeed(randomInstance.nextInt());
m_Classifiers[m_NumIterationsPerformed].buildClassifier(trainData);
// Evaluate the classifier
evaluation = new Evaluation(data);
evaluation.evaluateModel(m_Classifiers[m_NumIterationsPerformed], training);
epsilon = evaluation.errorRate();
// Stop if error too small or error too big and ignore this model
if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) {
if (m_NumIterationsPerformed == 0) {
m_NumIterationsPerformed = 1; // If we're the first we have to to use it
}
break;
}
// Determine the weight to assign to this model
m_Betas[m_NumIterationsPerformed] = Math.log((1 - epsilon) / epsilon);
reweight = (1 - epsilon) / epsilon;
if (m_Debug) {
System.err.println("\terror rate = " + epsilon
+" beta = " + m_Betas[m_NumIterationsPerformed]);
}
// Update instance weights
setWeights(training, reweight);
}
}
/**
* Calculates the class membership probabilities for the given test instance.
*
* @param instance the instance to be classified
* @return predicted class probability distribution
* @throws Exception if instance could not be classified
* successfully
*/
public double [] distributionForInstance(Instance instance)
throws Exception {
// default model?
if (m_ZeroR != null) {
return m_ZeroR.distributionForInstance(instance);
}
if (m_NumIterationsPerformed == 0) {
throw new Exception("No model built");
}
double [] sums = new double [instance.numClasses()];
if (m_NumIterationsPerformed == 1) {
return m_Classifiers[0].distributionForInstance(instance);
} else {
for (int i = 0; i < m_NumIterationsPerformed; i++) {
sums[(int)m_Classifiers[i].classifyInstance(instance)] += m_Betas[i];
}
return Utils.logs2probs(sums);
}
}
/**
* Returns the boosted model as Java source code.
*
* @param className the classname of the generated class
* @return the tree as Java source code
* @throws Exception if something goes wrong
*/
public String toSource(String className) throws Exception {
if (m_NumIterationsPerformed == 0) {
throw new Exception("No model built yet");
}
if (!(m_Classifiers[0] instanceof Sourcable)) {
throw new Exception("Base learner " + m_Classifier.getClass().getName()
+ " is not Sourcable");
}
StringBuffer text = new StringBuffer("class ");
text.append(className).append(" {\n\n");
text.append(" public static double classify(Object[] i) {\n");
if (m_NumIterationsPerformed == 1) {
text.append(" return " + className + "_0.classify(i);\n");
} else {
text.append(" double [] sums = new double [" + m_NumClasses + "];\n");
for (int i = 0; i < m_NumIterationsPerformed; i++) {
text.append(" sums[(int) " + className + '_' + i
+ ".classify(i)] += " + m_Betas[i] + ";\n");
}
text.append(" double maxV = sums[0];\n" +
" int maxI = 0;\n"+
" for (int j = 1; j < " + m_NumClasses + "; j++) {\n"+
" if (sums[j] > maxV) { maxV = sums[j]; maxI = j; }\n"+
" }\n return (double) maxI;\n");
}
text.append(" }\n}\n");
for (int i = 0; i < m_Classifiers.length; i++) {
text.append(((Sourcable)m_Classifiers[i])
.toSource(className + '_' + i));
}
return text.toString();
}
/**
* Returns description of the boosted classifier.
*
* @return description of the boosted classifier as a string
*/
public String toString() {
// only ZeroR model?
if (m_ZeroR != null) {
StringBuffer buf = new StringBuffer();
buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n");
buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n");
buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n");
buf.append(m_ZeroR.toString());
return buf.toString();
}
StringBuffer text = new StringBuffer();
if (m_NumIterationsPerformed == 0) {
text.append("AdaBoostM1: No model built yet.\n");
} else if (m_NumIterationsPerformed == 1) {
text.append("AdaBoostM1: No boosting possible, one classifier used!\n");
text.append(m_Classifiers[0].toString() + "\n");
} else {
text.append("AdaBoostM1: Base classifiers and their weights: \n\n");
for (int i = 0; i < m_NumIterationsPerformed ; i++) {
text.append(m_Classifiers[i].toString() + "\n\n");
text.append("Weight: " + Utils.roundDouble(m_Betas[i], 2) + "\n\n");
}
text.append("Number of performed Iterations: "
+ m_NumIterationsPerformed + "\n");
}
return text.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5928 $");
}
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String [] argv) {
runClassifier(new AdaBoostM1(), argv);
}
}
-P <num>
* Percentage of weight mass to base training on.
* (default 100, reduce to around 90 speed up)
*
* -Q
* Use resampling for boosting.
*
* -S <num>
* Random number seed.
* (default 1)
*
* -I <num>
* Number of iterations.
* (default 10)
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -W
* Full name of base classifier.
* (default: weka.classifiers.trees.DecisionStump)
*
*
* Options specific to classifier weka.classifiers.trees.DecisionStump:
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* Options after -- are passed to the designated classifier.