source: src/main/java/weka/classifiers/lazy/kstar/KStarNominalAttribute.java @ 13

Last change on this file since 13 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 17.9 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/**
18 *    KStarNominalAttribute.java
19 *    Copyright (C) 1995 Univeristy of Waikato
20 *    Java port to Weka by Abdelaziz Mahoui (am14@cs.waikato.ac.nz).
21 *
22 */
23
24
25package weka.classifiers.lazy.kstar;
26
27import weka.core.Attribute;
28import weka.core.Instance;
29import weka.core.Instances;
30import weka.core.RevisionHandler;
31import weka.core.RevisionUtils;
32
33/**
34 * A custom class which provides the environment for computing the
35 * transformation probability of a specified test instance nominal
36 * attribute to a specified train instance nominal attribute.
37 *
38 * @author Len Trigg (len@reeltwo.com)
39 * @author Abdelaziz Mahoui (am14@cs.waikato.ac.nz)
40 * @version $Revision 1.0 $
41 */
42public class KStarNominalAttribute
43  implements KStarConstants, RevisionHandler {
44 
45  /** The training instances used for classification. */
46  protected Instances m_TrainSet;
47
48  /** The test instance */
49  protected Instance m_Test;
50
51  /** The train instance */
52  protected Instance m_Train;
53
54  /** The index of the nominal attribute in the test and train instances */
55  protected int m_AttrIndex;
56
57  /** The stop parameter */
58  protected double m_Stop = 1.0;
59
60  /** Probability of test attribute transforming into train attribute
61      with missing value */
62  protected double m_MissingProb = 1.0;
63
64  /** Average probability of test attribute transforming into train
65      attribute */
66  protected double m_AverageProb = 1.0;
67
68  /** Smallest probability of test attribute transforming into
69      train attribute */
70  protected double m_SmallestProb = 1.0;
71
72  /** Number of trai instances with no missing attribute values */
73  protected int m_TotalCount;
74
75  /** Distribution of the attribute value in the train dataset */
76  protected int [] m_Distribution;
77
78  /** Set of colomns: each colomn representing a randomised version
79      of the train dataset class colomn */
80  protected int [][] m_RandClassCols;
81
82  /** A cache for storing attribute values and their corresponding
83      stop parameters */
84  protected KStarCache m_Cache;
85
86  // KStar Global settings
87
88  /** The number of instances in the dataset */
89  protected int m_NumInstances;
90
91  /** The number of class values */
92  protected int m_NumClasses;
93
94  /** The number of attributes */
95  protected int m_NumAttributes;
96
97  /** The class attribute type */
98  protected int m_ClassType;
99
100  /** missing value treatment */
101  protected int m_MissingMode = M_AVERAGE;
102
103  /** B_SPHERE = use specified blend, B_ENTROPY = entropic blend setting */
104  protected int m_BlendMethod = B_SPHERE ;
105
106  /** default sphere of influence blend setting */
107  protected int m_BlendFactor = 20;
108 
109  /**
110   * Constructor
111   */
112  public KStarNominalAttribute(Instance test, Instance train, int attrIndex,
113                               Instances trainSet, int [][] randClassCol, 
114                               KStarCache cache)
115  {
116    m_Test = test;
117    m_Train = train;
118    m_AttrIndex = attrIndex;
119    m_TrainSet = trainSet;
120    m_RandClassCols = randClassCol;
121    m_Cache = cache;
122    init();
123  }
124
125  /**
126   * Initializes the m_Attributes of the class.
127   */
128  private void init() {
129    try {
130      m_NumInstances  = m_TrainSet.numInstances();
131      m_NumClasses    = m_TrainSet.numClasses();
132      m_NumAttributes = m_TrainSet.numAttributes();
133      m_ClassType     = m_TrainSet.classAttribute().type();
134    } catch(Exception e) {
135      e.printStackTrace();
136    }
137  }
138
139  /**
140   * Calculates the probability of the indexed nominal attribute of the test
141   * instance transforming into the indexed nominal attribute of the training
142   * instance.
143   *
144   * @return the value of the transformation probability.
145   */
146  public double transProb() {
147    String debug = "(KStarNominalAttribute.transProb) ";
148    double transProb = 0.0;
149    // check if the attribute value has been encountred before
150    // in which case it should be in the nominal cache
151    if (m_Cache.containsKey(m_Test.value(m_AttrIndex))) {
152      KStarCache.TableEntry te = 
153        m_Cache.getCacheValues(m_Test.value(m_AttrIndex));
154      m_Stop = te.value;
155      m_MissingProb = te.pmiss;
156    }
157    else {
158      generateAttrDistribution();
159      // we have to compute the parameters
160      if (m_BlendMethod == B_ENTROPY) {
161        m_Stop = stopProbUsingEntropy();
162      }
163      else { // default is B_SPHERE
164        m_Stop = stopProbUsingBlend();
165      }
166      // store the values in cache
167      m_Cache.store( m_Test.value(m_AttrIndex), m_Stop, m_MissingProb );
168    }
169    // we've got our m_Stop, then what?
170    if (m_Train.isMissing(m_AttrIndex)) {
171      transProb = m_MissingProb;
172    }
173    else {
174      try {
175        transProb = (1.0 - m_Stop) / m_Test.attribute(m_AttrIndex).numValues();
176        if ( (int)m_Test.value(m_AttrIndex) == 
177             (int)m_Train.value(m_AttrIndex) )
178          {
179            transProb += m_Stop;
180          }
181      } catch (Exception e) {
182        e.printStackTrace();
183      }
184    }
185    return transProb;
186  }
187 
188  /**
189   * Calculates the "stop parameter" for this attribute using
190   * the entropy method: the value is computed using a root finder
191   * algorithm. The method takes advantage of the calculation to
192   * compute the smallest and average transformation probabilities
193   * once the stop factor is obtained. It also sets the transformation
194   * probability to an attribute with a missing value.
195   *
196   * @return the value of the stop parameter.
197   *
198   */
199  private double stopProbUsingEntropy() {
200    String debug = "(KStarNominalAttribute.stopProbUsingEntropy)";
201    if ( m_ClassType != Attribute.NOMINAL ) {
202      System.err.println("Error: "+debug+" attribute class must be nominal!");
203      System.exit(1);
204    }
205    int itcount = 0;
206    double stopProb;
207    double lower, upper, pstop;
208    double bestminprob = 0.0, bestpsum = 0.0;
209    double bestdiff = 0.0, bestpstop = 0.0;
210    double currentdiff, lastdiff, stepsize, delta;
211   
212    KStarWrapper botvals = new KStarWrapper();
213    KStarWrapper upvals = new KStarWrapper();
214    KStarWrapper vals = new KStarWrapper();
215
216    // Initial values for root finder
217    lower = 0.0 + ROOT_FINDER_ACCURACY/2.0;
218    upper = 1.0 - ROOT_FINDER_ACCURACY/2.0;
219   
220    // Find (approx) entropy ranges
221    calculateEntropy(upper, upvals);
222    calculateEntropy(lower, botvals);
223   
224    if (upvals.avgProb == 0) {
225      // When there are no training instances with the test value:
226      // doesn't matter what exact value we use for pstop, just acts as
227      // a constant scale factor in this case.
228      calculateEntropy(lower, vals);
229    }
230    else
231      {
232        // Optimise the scale factor
233        if ( (upvals.randEntropy - upvals.actEntropy < 
234              botvals.randEntropy - botvals.actEntropy) &&
235             (botvals.randEntropy - botvals.actEntropy > FLOOR) )
236          {
237            bestpstop = pstop = lower;
238            stepsize = INITIAL_STEP;
239            bestminprob = botvals.minProb;
240            bestpsum = botvals.avgProb;
241          }
242        else {
243          bestpstop = pstop = upper;
244          stepsize = -INITIAL_STEP;
245          bestminprob = upvals.minProb;
246          bestpsum = upvals.avgProb;
247        }
248        bestdiff = currentdiff = FLOOR;
249        itcount = 0;
250        /* Enter the root finder */
251        while (true)
252          {
253            itcount++; 
254            lastdiff = currentdiff;
255            pstop += stepsize;
256            if (pstop <= lower) {
257              pstop = lower;
258              currentdiff = 0.0;
259              delta = -1.0;
260            }
261            else if (pstop >= upper) {
262              pstop = upper;
263              currentdiff = 0.0;
264              delta = -1.0;
265            }
266            else {
267              calculateEntropy(pstop, vals);
268              currentdiff = vals.randEntropy - vals.actEntropy;
269
270              if (currentdiff < FLOOR) {
271                currentdiff = FLOOR;
272                if ((Math.abs(stepsize) < INITIAL_STEP) && 
273                    (bestdiff == FLOOR)) {
274                  bestpstop = lower;
275                  bestminprob = botvals.minProb;
276                  bestpsum = botvals.avgProb;
277                  break;
278                }
279              }
280              delta = currentdiff - lastdiff;
281            }
282            if (currentdiff > bestdiff) {
283              bestdiff = currentdiff;
284              bestpstop = pstop;
285              bestminprob = vals.minProb;
286              bestpsum = vals.avgProb;
287            }
288            if (delta < 0) {
289              if (Math.abs(stepsize) < ROOT_FINDER_ACCURACY) {
290                break;
291              }
292              else {
293                stepsize /= -2.0;
294              }
295            }
296            if (itcount > ROOT_FINDER_MAX_ITER) {
297              break;
298            }
299          }
300      }
301   
302    m_SmallestProb = bestminprob;
303    m_AverageProb = bestpsum;
304    // Set the probability of transforming to a missing value
305    switch ( m_MissingMode )
306      {
307      case M_DELETE:
308        m_MissingProb = 0.0;
309        break;
310      case M_NORMAL:
311        m_MissingProb = 1.0;
312        break;
313      case M_MAXDIFF:
314        m_MissingProb = m_SmallestProb;
315        break;
316      case M_AVERAGE:
317        m_MissingProb = m_AverageProb;
318        break;
319      }
320
321    if ( Math.abs(bestpsum - (double)m_TotalCount) < EPSILON) { 
322      // No difference in the values
323      stopProb = 1.0;
324    }
325    else {
326      stopProb = bestpstop;
327    }
328    return stopProb;
329  }
330
331  /**
332   * Calculates the entropy of the actual class prediction
333   * and the entropy for random class prediction. It also
334   * calculates the smallest and average transformation probabilities.
335   *
336   * @param stop the stop parameter
337   * @param params the object wrapper for the parameters:
338   * actual entropy, random entropy, average probability and smallest
339   * probability.
340   * @return the values are returned in the object "params".
341   *
342   */
343  private void calculateEntropy( double stop, KStarWrapper params) {
344    String debug = "(KStarNominalAttribute.calculateEntropy)";
345    int i,j,k;
346    Instance train;
347    double actent = 0.0, randent=0.0;
348    double pstar, tprob, psum=0.0, minprob=1.0;
349    double actClassProb, randClassProb;
350    double [][] pseudoClassProb = new double[NUM_RAND_COLS+1][m_NumClasses];
351    // init ...
352    for(j = 0; j <= NUM_RAND_COLS; j++) {
353      for(i = 0; i < m_NumClasses; i++) {
354        pseudoClassProb[j][i] = 0.0;
355      }
356    }
357    for (i=0; i < m_NumInstances; i++) {
358      train = m_TrainSet.instance(i);
359      if (!train.isMissing(m_AttrIndex)) {
360        pstar = PStar(m_Test, train, m_AttrIndex, stop);
361        tprob = pstar / m_TotalCount;
362        if (pstar < minprob) {
363          minprob = pstar;
364        }
365        psum += tprob;
366        // filter instances with same class value
367        for (k=0 ; k <= NUM_RAND_COLS ; k++) {
368          // instance i is assigned a random class value in colomn k;
369          // colomn k = NUM_RAND_COLS contains the original mapping:
370          // instance -> class vlaue
371          pseudoClassProb[k][ m_RandClassCols[k][i] ] += tprob;
372        }
373      }
374    }
375    // compute the actual entropy using the class probs
376    // with the original class value mapping (colomn NUM_RAND_COLS)
377    for (j=m_NumClasses-1; j>=0; j--) {
378      actClassProb = pseudoClassProb[NUM_RAND_COLS][j] / psum;
379      if (actClassProb > 0) {
380        actent -= actClassProb * Math.log(actClassProb) / LOG2;
381      }
382    }
383    // compute a random entropy using the pseudo class probs
384    // excluding the colomn NUM_RAND_COLS
385    for (k=0; k < NUM_RAND_COLS;k++) {
386      for (i = m_NumClasses-1; i >= 0; i--) {
387        randClassProb = pseudoClassProb[k][i] / psum;
388        if (randClassProb > 0) {
389          randent -= randClassProb * Math.log(randClassProb) / LOG2;
390        }
391      }
392    }
393    randent /= NUM_RAND_COLS;
394    // return the results ... Yuk !!!
395    params.actEntropy = actent;
396    params.randEntropy = randent;
397    params.avgProb = psum;
398    params.minProb = minprob;
399  }
400 
401  /**
402   * Calculates the "stop parameter" for this attribute using
403   * the blend method: the value is computed using a root finder
404   * algorithm. The method takes advantage of this calculation to
405   * compute the smallest and average transformation probabilities
406   * once the stop factor is obtained. It also sets the transformation
407   * probability to an attribute with a missing value.
408   *
409   * @return the value of the stop parameter.
410   *
411   */
412  private double stopProbUsingBlend() {
413    String debug = "(KStarNominalAttribute.stopProbUsingBlend) ";
414    int itcount = 0;
415    double stopProb, aimfor;
416    double lower, upper, tstop;
417
418    KStarWrapper botvals = new KStarWrapper();
419    KStarWrapper upvals = new KStarWrapper();
420    KStarWrapper vals = new KStarWrapper();
421
422    int testvalue = (int)m_Test.value(m_AttrIndex);
423    aimfor = (m_TotalCount - m_Distribution[testvalue]) * 
424      (double)m_BlendFactor / 100.0 + m_Distribution[testvalue];
425
426    // Initial values for root finder
427    tstop = 1.0 - (double)m_BlendFactor / 100.0;
428    lower = 0.0 + ROOT_FINDER_ACCURACY/2.0;
429    upper = 1.0 - ROOT_FINDER_ACCURACY/2.0;
430
431    // Find out function border values
432    calculateSphereSize(testvalue, lower, botvals);
433    botvals.sphere -= aimfor;
434    calculateSphereSize(testvalue, upper, upvals);
435    upvals.sphere -= aimfor;
436   
437    if (upvals.avgProb == 0) {
438      // When there are no training instances with the test value:
439      // doesn't matter what exact value we use for tstop, just acts as
440      // a constant scale factor in this case.
441      calculateSphereSize(testvalue, tstop, vals);
442    }
443    else if (upvals.sphere > 0) {
444      // Can't include aimfor instances, going for min possible
445      tstop = upper;
446      vals.avgProb = upvals.avgProb;
447    }
448    else {
449      // Enter the root finder
450      for (;;) {
451        itcount++;
452        calculateSphereSize(testvalue, tstop, vals);
453        vals.sphere -= aimfor;
454        if ( Math.abs(vals.sphere) <= ROOT_FINDER_ACCURACY ||
455             itcount >= ROOT_FINDER_MAX_ITER )
456          {
457            break;
458          }
459        if (vals.sphere > 0.0) {
460          lower = tstop;
461          tstop = (upper + lower) / 2.0;
462        }
463        else {
464          upper = tstop;
465          tstop = (upper + lower) / 2.0;
466        }
467      }
468    }
469
470    m_SmallestProb = vals.minProb;
471    m_AverageProb = vals.avgProb;
472    // Set the probability of transforming to a missing value
473    switch ( m_MissingMode )
474      {
475      case M_DELETE:
476        m_MissingProb = 0.0;
477        break;
478      case M_NORMAL:
479        m_MissingProb = 1.0;
480        break;
481      case M_MAXDIFF:
482        m_MissingProb = m_SmallestProb;
483        break;
484      case M_AVERAGE:
485        m_MissingProb = m_AverageProb;
486        break;
487      }
488   
489    if ( Math.abs(vals.avgProb - m_TotalCount) < EPSILON) { 
490      // No difference in the values
491      stopProb = 1.0;
492    }
493    else {
494      stopProb = tstop;
495    }
496    return stopProb;
497  }
498 
499  /**
500   * Calculates the size of the "sphere of influence" defined as:
501   * sphere = sum(P^2)/sum(P)^2
502   * P(i|j) = (1-tstop)*P(i) + ((i==j)?tstop:0).
503   * This method takes advantage of the calculation to compute the values of
504   * the "smallest" and "average" transformation probabilities when using
505   * the specified stop parameter.
506   *
507   * @param testValue the value of the test instance
508   * @param stop the stop parameter
509   * @param params a wrapper of the parameters to be computed:
510   * "sphere" the sphere size
511   * "avgprob" the average transformation probability
512   * "minProb" the smallest transformation probability
513   * @return the values are returned in "params" object.
514   *
515   */
516  private void calculateSphereSize(int testvalue, double stop, 
517                                   KStarWrapper params) {
518    String debug = "(KStarNominalAttribute.calculateSphereSize) ";
519    int i, thiscount;
520    double tprob, tval = 0.0, t1 = 0.0;
521    double sphere, minprob = 1.0, transprob = 0.0;
522
523    for(i = 0; i < m_Distribution.length; i++) {
524      thiscount = m_Distribution[i];
525      if ( thiscount != 0 ) {
526        if ( testvalue == i ) {
527          tprob = (stop + (1 - stop) / m_Distribution.length) / m_TotalCount;
528          tval += tprob * thiscount;
529          t1 += tprob * tprob * thiscount;
530        }
531        else {
532          tprob = ((1 - stop) / m_Distribution.length) / m_TotalCount;
533          tval += tprob * thiscount;
534          t1 += tprob * tprob * thiscount;
535        }
536        if ( minprob > tprob * m_TotalCount ) {
537          minprob = tprob * m_TotalCount;
538        }
539      }
540    }
541    transprob = tval;
542    sphere = (t1 == 0) ? 0 : ((tval * tval) / t1);
543    // return values ... Yck!!!
544    params.sphere = sphere;
545    params.avgProb = transprob;
546    params.minProb = minprob;
547  }
548 
549  /**
550   * Calculates the nominal probability function defined as:
551   * P(i|j) = (1-stop) * P(i) + ((i==j) ? stop : 0)
552   * In this case, it calculates the transformation probability of the
553   * indexed test attribute to the indexed train attribute.
554   *
555   * @param test the test instance
556   * @param train the train instance
557   * @param col the attribute index
558   * @return the value of the tranformation probability.
559   *
560   */
561  private double PStar(Instance test, Instance train, int col, double stop) {
562    String debug = "(KStarNominalAttribute.PStar) ";
563    double pstar;
564    int numvalues = 0;
565    try {
566      numvalues = test.attribute(col).numValues();
567    } catch (Exception ex) {
568      ex.printStackTrace();
569    }
570    if ( (int)test.value(col) == (int)train.value(col) ) {
571      pstar = stop + (1 - stop) / numvalues;
572    }
573    else {
574      pstar = (1 - stop) / numvalues;
575    }
576    return pstar;
577  }
578 
579  /**
580   * Calculates the distribution, in the dataset, of the indexed nominal
581   * attribute values. It also counts the actual number of training instances
582   * that contributed (those with non-missing values) to calculate the
583   * distribution.
584   */
585  private void generateAttrDistribution() {
586    String debug = "(KStarNominalAttribute.generateAttrDistribution)";
587    m_Distribution = new int[ m_TrainSet.attribute(m_AttrIndex).numValues() ];
588    int i;
589    Instance train;
590    for (i=0; i < m_NumInstances; i++) {
591      train = m_TrainSet.instance(i);
592      if ( !train.isMissing(m_AttrIndex) ) {
593        m_TotalCount++;
594        m_Distribution[(int)train.value(m_AttrIndex)]++;
595      }
596    }
597  }
598
599  /**
600   * Sets the options.
601   *
602   */
603  public void setOptions(int missingmode, int blendmethod, int blendfactor) {
604    m_MissingMode = missingmode;
605    m_BlendMethod = blendmethod;
606    m_BlendFactor = blendfactor;
607  }
608 
609  /**
610   * Returns the revision string.
611   *
612   * @return            the revision
613   */
614  public String getRevision() {
615    return RevisionUtils.extract("$Revision: 1.7 $");
616  }
617} // class
Note: See TracBrowser for help on using the repository browser.