| [4] | 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * LWL.java |
|---|
| 19 | * Copyright (C) 1999, 2002, 2003 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.lazy; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.Classifier; |
|---|
| 26 | import weka.classifiers.AbstractClassifier; |
|---|
| 27 | import weka.classifiers.SingleClassifierEnhancer; |
|---|
| 28 | import weka.classifiers.UpdateableClassifier; |
|---|
| 29 | import weka.core.Capabilities; |
|---|
| 30 | import weka.core.Instance; |
|---|
| 31 | import weka.core.Instances; |
|---|
| 32 | import weka.core.neighboursearch.LinearNNSearch; |
|---|
| 33 | import weka.core.neighboursearch.NearestNeighbourSearch; |
|---|
| 34 | import weka.core.Option; |
|---|
| 35 | import weka.core.RevisionUtils; |
|---|
| 36 | import weka.core.TechnicalInformation; |
|---|
| 37 | import weka.core.TechnicalInformationHandler; |
|---|
| 38 | import weka.core.Utils; |
|---|
| 39 | import weka.core.WeightedInstancesHandler; |
|---|
| 40 | import weka.core.Capabilities.Capability; |
|---|
| 41 | import weka.core.TechnicalInformation.Field; |
|---|
| 42 | import weka.core.TechnicalInformation.Type; |
|---|
| 43 | |
|---|
| 44 | import java.util.Enumeration; |
|---|
| 45 | import java.util.Vector; |
|---|
| 46 | |
|---|
| 47 | /** |
|---|
| 48 | <!-- globalinfo-start --> |
|---|
| 49 | * Locally weighted learning. Uses an instance-based algorithm to assign instance weights which are then used by a specified WeightedInstancesHandler.<br/> |
|---|
| 50 | * Can do classification (e.g. using naive Bayes) or regression (e.g. using linear regression).<br/> |
|---|
| 51 | * <br/> |
|---|
| 52 | * For more info, see<br/> |
|---|
| 53 | * <br/> |
|---|
| 54 | * Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally Weighted Naive Bayes. In: 19th Conference in Uncertainty in Artificial Intelligence, 249-256, 2003.<br/> |
|---|
| 55 | * <br/> |
|---|
| 56 | * C. Atkeson, A. Moore, S. Schaal (1996). Locally weighted learning. AI Review.. |
|---|
| 57 | * <p/> |
|---|
| 58 | <!-- globalinfo-end --> |
|---|
| 59 | * |
|---|
| 60 | <!-- technical-bibtex-start --> |
|---|
| 61 | * BibTeX: |
|---|
| 62 | * <pre> |
|---|
| 63 | * @inproceedings{Frank2003, |
|---|
| 64 | * author = {Eibe Frank and Mark Hall and Bernhard Pfahringer}, |
|---|
| 65 | * booktitle = {19th Conference in Uncertainty in Artificial Intelligence}, |
|---|
| 66 | * pages = {249-256}, |
|---|
| 67 | * publisher = {Morgan Kaufmann}, |
|---|
| 68 | * title = {Locally Weighted Naive Bayes}, |
|---|
| 69 | * year = {2003} |
|---|
| 70 | * } |
|---|
| 71 | * |
|---|
| 72 | * @article{Atkeson1996, |
|---|
| 73 | * author = {C. Atkeson and A. Moore and S. Schaal}, |
|---|
| 74 | * journal = {AI Review}, |
|---|
| 75 | * title = {Locally weighted learning}, |
|---|
| 76 | * year = {1996} |
|---|
| 77 | * } |
|---|
| 78 | * </pre> |
|---|
| 79 | * <p/> |
|---|
| 80 | <!-- technical-bibtex-end --> |
|---|
| 81 | * |
|---|
| 82 | <!-- options-start --> |
|---|
| 83 | * Valid options are: <p/> |
|---|
| 84 | * |
|---|
| 85 | * <pre> -A |
|---|
| 86 | * The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch). |
|---|
| 87 | * </pre> |
|---|
| 88 | * |
|---|
| 89 | * <pre> -K <number of neighbours> |
|---|
| 90 | * Set the number of neighbours used to set the kernel bandwidth. |
|---|
| 91 | * (default all)</pre> |
|---|
| 92 | * |
|---|
| 93 | * <pre> -U <number of weighting method> |
|---|
| 94 | * Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov, |
|---|
| 95 | * 2=Tricube, 3=Inverse, 4=Gaussian. |
|---|
| 96 | * (default 0 = Linear)</pre> |
|---|
| 97 | * |
|---|
| 98 | * <pre> -D |
|---|
| 99 | * If set, classifier is run in debug mode and |
|---|
| 100 | * may output additional info to the console</pre> |
|---|
| 101 | * |
|---|
| 102 | * <pre> -W |
|---|
| 103 | * Full name of base classifier. |
|---|
| 104 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
|---|
| 105 | * |
|---|
| 106 | * <pre> |
|---|
| 107 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
|---|
| 108 | * </pre> |
|---|
| 109 | * |
|---|
| 110 | * <pre> -D |
|---|
| 111 | * If set, classifier is run in debug mode and |
|---|
| 112 | * may output additional info to the console</pre> |
|---|
| 113 | * |
|---|
| 114 | <!-- options-end --> |
|---|
| 115 | * |
|---|
| 116 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
|---|
| 117 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
|---|
| 118 | * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) |
|---|
| 119 | * @version $Revision: 6055 $ |
|---|
| 120 | */ |
|---|
| 121 | public class LWL |
|---|
| 122 | extends SingleClassifierEnhancer |
|---|
| 123 | implements UpdateableClassifier, WeightedInstancesHandler, |
|---|
| 124 | TechnicalInformationHandler { |
|---|
| 125 | |
|---|
| 126 | /** for serialization. */ |
|---|
| 127 | static final long serialVersionUID = 1979797405383665815L; |
|---|
| 128 | |
|---|
| 129 | /** The training instances used for classification. */ |
|---|
| 130 | protected Instances m_Train; |
|---|
| 131 | |
|---|
| 132 | /** The number of neighbours used to select the kernel bandwidth. */ |
|---|
| 133 | protected int m_kNN = -1; |
|---|
| 134 | |
|---|
| 135 | /** The weighting kernel method currently selected. */ |
|---|
| 136 | protected int m_WeightKernel = LINEAR; |
|---|
| 137 | |
|---|
| 138 | /** True if m_kNN should be set to all instances. */ |
|---|
| 139 | protected boolean m_UseAllK = true; |
|---|
| 140 | |
|---|
| 141 | /** The nearest neighbour search algorithm to use. |
|---|
| 142 | * (Default: weka.core.neighboursearch.LinearNNSearch) |
|---|
| 143 | */ |
|---|
| 144 | protected NearestNeighbourSearch m_NNSearch = new LinearNNSearch(); |
|---|
| 145 | |
|---|
| 146 | /** The available kernel weighting methods. */ |
|---|
| 147 | public static final int LINEAR = 0; |
|---|
| 148 | public static final int EPANECHNIKOV = 1; |
|---|
| 149 | public static final int TRICUBE = 2; |
|---|
| 150 | public static final int INVERSE = 3; |
|---|
| 151 | public static final int GAUSS = 4; |
|---|
| 152 | public static final int CONSTANT = 5; |
|---|
| 153 | |
|---|
| 154 | /** a ZeroR model in case no model can be built from the data. */ |
|---|
| 155 | protected Classifier m_ZeroR; |
|---|
| 156 | |
|---|
| 157 | /** |
|---|
| 158 | * Returns a string describing classifier. |
|---|
| 159 | * @return a description suitable for |
|---|
| 160 | * displaying in the explorer/experimenter gui |
|---|
| 161 | */ |
|---|
| 162 | public String globalInfo() { |
|---|
| 163 | return |
|---|
| 164 | "Locally weighted learning. Uses an instance-based algorithm to " |
|---|
| 165 | + "assign instance weights which are then used by a specified " |
|---|
| 166 | + "WeightedInstancesHandler.\n" |
|---|
| 167 | + "Can do classification (e.g. using naive Bayes) or regression " |
|---|
| 168 | + "(e.g. using linear regression).\n\n" |
|---|
| 169 | + "For more info, see\n\n" |
|---|
| 170 | + getTechnicalInformation().toString(); |
|---|
| 171 | } |
|---|
| 172 | |
|---|
| 173 | /** |
|---|
| 174 | * Returns an instance of a TechnicalInformation object, containing |
|---|
| 175 | * detailed information about the technical background of this class, |
|---|
| 176 | * e.g., paper reference or book this class is based on. |
|---|
| 177 | * |
|---|
| 178 | * @return the technical information about this class |
|---|
| 179 | */ |
|---|
| 180 | public TechnicalInformation getTechnicalInformation() { |
|---|
| 181 | TechnicalInformation result; |
|---|
| 182 | TechnicalInformation additional; |
|---|
| 183 | |
|---|
| 184 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
|---|
| 185 | result.setValue(Field.AUTHOR, "Eibe Frank and Mark Hall and Bernhard Pfahringer"); |
|---|
| 186 | result.setValue(Field.YEAR, "2003"); |
|---|
| 187 | result.setValue(Field.TITLE, "Locally Weighted Naive Bayes"); |
|---|
| 188 | result.setValue(Field.BOOKTITLE, "19th Conference in Uncertainty in Artificial Intelligence"); |
|---|
| 189 | result.setValue(Field.PAGES, "249-256"); |
|---|
| 190 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
|---|
| 191 | |
|---|
| 192 | additional = result.add(Type.ARTICLE); |
|---|
| 193 | additional.setValue(Field.AUTHOR, "C. Atkeson and A. Moore and S. Schaal"); |
|---|
| 194 | additional.setValue(Field.YEAR, "1996"); |
|---|
| 195 | additional.setValue(Field.TITLE, "Locally weighted learning"); |
|---|
| 196 | additional.setValue(Field.JOURNAL, "AI Review"); |
|---|
| 197 | |
|---|
| 198 | return result; |
|---|
| 199 | } |
|---|
| 200 | |
|---|
| 201 | /** |
|---|
| 202 | * Constructor. |
|---|
| 203 | */ |
|---|
| 204 | public LWL() { |
|---|
| 205 | m_Classifier = new weka.classifiers.trees.DecisionStump(); |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | /** |
|---|
| 209 | * String describing default classifier. |
|---|
| 210 | * |
|---|
| 211 | * @return the default classifier classname |
|---|
| 212 | */ |
|---|
| 213 | protected String defaultClassifierString() { |
|---|
| 214 | |
|---|
| 215 | return "weka.classifiers.trees.DecisionStump"; |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | /** |
|---|
| 219 | * Returns an enumeration of the additional measure names |
|---|
| 220 | * produced by the neighbour search algorithm. |
|---|
| 221 | * @return an enumeration of the measure names |
|---|
| 222 | */ |
|---|
| 223 | public Enumeration enumerateMeasures() { |
|---|
| 224 | return m_NNSearch.enumerateMeasures(); |
|---|
| 225 | } |
|---|
| 226 | |
|---|
| 227 | /** |
|---|
| 228 | * Returns the value of the named measure from the |
|---|
| 229 | * neighbour search algorithm. |
|---|
| 230 | * @param additionalMeasureName the name of the measure to query for its value |
|---|
| 231 | * @return the value of the named measure |
|---|
| 232 | * @throws IllegalArgumentException if the named measure is not supported |
|---|
| 233 | */ |
|---|
| 234 | public double getMeasure(String additionalMeasureName) { |
|---|
| 235 | return m_NNSearch.getMeasure(additionalMeasureName); |
|---|
| 236 | } |
|---|
| 237 | |
|---|
| 238 | /** |
|---|
| 239 | * Returns an enumeration describing the available options. |
|---|
| 240 | * |
|---|
| 241 | * @return an enumeration of all the available options. |
|---|
| 242 | */ |
|---|
| 243 | public Enumeration listOptions() { |
|---|
| 244 | |
|---|
| 245 | Vector newVector = new Vector(3); |
|---|
| 246 | newVector.addElement(new Option("\tThe nearest neighbour search " + |
|---|
| 247 | "algorithm to use " + |
|---|
| 248 | "(default: weka.core.neighboursearch.LinearNNSearch).\n", |
|---|
| 249 | "A", 0, "-A")); |
|---|
| 250 | newVector.addElement(new Option("\tSet the number of neighbours used to set" |
|---|
| 251 | +" the kernel bandwidth.\n" |
|---|
| 252 | +"\t(default all)", |
|---|
| 253 | "K", 1, "-K <number of neighbours>")); |
|---|
| 254 | newVector.addElement(new Option("\tSet the weighting kernel shape to use." |
|---|
| 255 | +" 0=Linear, 1=Epanechnikov,\n" |
|---|
| 256 | +"\t2=Tricube, 3=Inverse, 4=Gaussian.\n" |
|---|
| 257 | +"\t(default 0 = Linear)", |
|---|
| 258 | "U", 1,"-U <number of weighting method>")); |
|---|
| 259 | |
|---|
| 260 | Enumeration enu = super.listOptions(); |
|---|
| 261 | while (enu.hasMoreElements()) { |
|---|
| 262 | newVector.addElement(enu.nextElement()); |
|---|
| 263 | } |
|---|
| 264 | |
|---|
| 265 | return newVector.elements(); |
|---|
| 266 | } |
|---|
| 267 | |
|---|
| 268 | /** |
|---|
| 269 | * Parses a given list of options. <p/> |
|---|
| 270 | * |
|---|
| 271 | <!-- options-start --> |
|---|
| 272 | * Valid options are: <p/> |
|---|
| 273 | * |
|---|
| 274 | * <pre> -A |
|---|
| 275 | * The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch). |
|---|
| 276 | * </pre> |
|---|
| 277 | * |
|---|
| 278 | * <pre> -K <number of neighbours> |
|---|
| 279 | * Set the number of neighbours used to set the kernel bandwidth. |
|---|
| 280 | * (default all)</pre> |
|---|
| 281 | * |
|---|
| 282 | * <pre> -U <number of weighting method> |
|---|
| 283 | * Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov, |
|---|
| 284 | * 2=Tricube, 3=Inverse, 4=Gaussian. |
|---|
| 285 | * (default 0 = Linear)</pre> |
|---|
| 286 | * |
|---|
| 287 | * <pre> -D |
|---|
| 288 | * If set, classifier is run in debug mode and |
|---|
| 289 | * may output additional info to the console</pre> |
|---|
| 290 | * |
|---|
| 291 | * <pre> -W |
|---|
| 292 | * Full name of base classifier. |
|---|
| 293 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
|---|
| 294 | * |
|---|
| 295 | * <pre> |
|---|
| 296 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
|---|
| 297 | * </pre> |
|---|
| 298 | * |
|---|
| 299 | * <pre> -D |
|---|
| 300 | * If set, classifier is run in debug mode and |
|---|
| 301 | * may output additional info to the console</pre> |
|---|
| 302 | * |
|---|
| 303 | <!-- options-end --> |
|---|
| 304 | * |
|---|
| 305 | * @param options the list of options as an array of strings |
|---|
| 306 | * @throws Exception if an option is not supported |
|---|
| 307 | */ |
|---|
| 308 | public void setOptions(String[] options) throws Exception { |
|---|
| 309 | |
|---|
| 310 | String knnString = Utils.getOption('K', options); |
|---|
| 311 | if (knnString.length() != 0) { |
|---|
| 312 | setKNN(Integer.parseInt(knnString)); |
|---|
| 313 | } else { |
|---|
| 314 | setKNN(-1); |
|---|
| 315 | } |
|---|
| 316 | |
|---|
| 317 | String weightString = Utils.getOption('U', options); |
|---|
| 318 | if (weightString.length() != 0) { |
|---|
| 319 | setWeightingKernel(Integer.parseInt(weightString)); |
|---|
| 320 | } else { |
|---|
| 321 | setWeightingKernel(LINEAR); |
|---|
| 322 | } |
|---|
| 323 | |
|---|
| 324 | String nnSearchClass = Utils.getOption('A', options); |
|---|
| 325 | if(nnSearchClass.length() != 0) { |
|---|
| 326 | String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass); |
|---|
| 327 | if(nnSearchClassSpec.length == 0) { |
|---|
| 328 | throw new Exception("Invalid NearestNeighbourSearch algorithm " + |
|---|
| 329 | "specification string."); |
|---|
| 330 | } |
|---|
| 331 | String className = nnSearchClassSpec[0]; |
|---|
| 332 | nnSearchClassSpec[0] = ""; |
|---|
| 333 | |
|---|
| 334 | setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch) |
|---|
| 335 | Utils.forName( NearestNeighbourSearch.class, |
|---|
| 336 | className, |
|---|
| 337 | nnSearchClassSpec) |
|---|
| 338 | ); |
|---|
| 339 | } |
|---|
| 340 | else |
|---|
| 341 | this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch()); |
|---|
| 342 | |
|---|
| 343 | super.setOptions(options); |
|---|
| 344 | } |
|---|
| 345 | |
|---|
| 346 | /** |
|---|
| 347 | * Gets the current settings of the classifier. |
|---|
| 348 | * |
|---|
| 349 | * @return an array of strings suitable for passing to setOptions |
|---|
| 350 | */ |
|---|
| 351 | public String [] getOptions() { |
|---|
| 352 | |
|---|
| 353 | String [] superOptions = super.getOptions(); |
|---|
| 354 | String [] options = new String [superOptions.length + 6]; |
|---|
| 355 | |
|---|
| 356 | int current = 0; |
|---|
| 357 | |
|---|
| 358 | options[current++] = "-U"; options[current++] = "" + getWeightingKernel(); |
|---|
| 359 | if ( (getKNN() == 0) && m_UseAllK) { |
|---|
| 360 | options[current++] = "-K"; options[current++] = "-1"; |
|---|
| 361 | } |
|---|
| 362 | else { |
|---|
| 363 | options[current++] = "-K"; options[current++] = "" + getKNN(); |
|---|
| 364 | } |
|---|
| 365 | options[current++] = "-A"; |
|---|
| 366 | options[current++] = m_NNSearch.getClass().getName()+" "+Utils.joinOptions(m_NNSearch.getOptions()); |
|---|
| 367 | |
|---|
| 368 | System.arraycopy(superOptions, 0, options, current, |
|---|
| 369 | superOptions.length); |
|---|
| 370 | |
|---|
| 371 | return options; |
|---|
| 372 | } |
|---|
| 373 | |
|---|
| 374 | /** |
|---|
| 375 | * Returns the tip text for this property. |
|---|
| 376 | * @return tip text for this property suitable for |
|---|
| 377 | * displaying in the explorer/experimenter gui |
|---|
| 378 | */ |
|---|
| 379 | public String KNNTipText() { |
|---|
| 380 | return "How many neighbours are used to determine the width of the " |
|---|
| 381 | + "weighting function (<= 0 means all neighbours)."; |
|---|
| 382 | } |
|---|
| 383 | |
|---|
| 384 | /** |
|---|
| 385 | * Sets the number of neighbours used for kernel bandwidth setting. |
|---|
| 386 | * The bandwidth is taken as the distance to the kth neighbour. |
|---|
| 387 | * |
|---|
| 388 | * @param knn the number of neighbours included inside the kernel |
|---|
| 389 | * bandwidth, or 0 to specify using all neighbors. |
|---|
| 390 | */ |
|---|
| 391 | public void setKNN(int knn) { |
|---|
| 392 | |
|---|
| 393 | m_kNN = knn; |
|---|
| 394 | if (knn <= 0) { |
|---|
| 395 | m_kNN = 0; |
|---|
| 396 | m_UseAllK = true; |
|---|
| 397 | } else { |
|---|
| 398 | m_UseAllK = false; |
|---|
| 399 | } |
|---|
| 400 | } |
|---|
| 401 | |
|---|
| 402 | /** |
|---|
| 403 | * Gets the number of neighbours used for kernel bandwidth setting. |
|---|
| 404 | * The bandwidth is taken as the distance to the kth neighbour. |
|---|
| 405 | * |
|---|
| 406 | * @return the number of neighbours included inside the kernel |
|---|
| 407 | * bandwidth, or 0 for all neighbours |
|---|
| 408 | */ |
|---|
| 409 | public int getKNN() { |
|---|
| 410 | |
|---|
| 411 | return m_kNN; |
|---|
| 412 | } |
|---|
| 413 | |
|---|
| 414 | /** |
|---|
| 415 | * Returns the tip text for this property. |
|---|
| 416 | * @return tip text for this property suitable for |
|---|
| 417 | * displaying in the explorer/experimenter gui |
|---|
| 418 | */ |
|---|
| 419 | public String weightingKernelTipText() { |
|---|
| 420 | return "Determines weighting function. [0 = Linear, 1 = Epnechnikov,"+ |
|---|
| 421 | "2 = Tricube, 3 = Inverse, 4 = Gaussian and 5 = Constant. "+ |
|---|
| 422 | "(default 0 = Linear)]."; |
|---|
| 423 | } |
|---|
| 424 | |
|---|
| 425 | /** |
|---|
| 426 | * Sets the kernel weighting method to use. Must be one of LINEAR, |
|---|
| 427 | * EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT, other values |
|---|
| 428 | * are ignored. |
|---|
| 429 | * |
|---|
| 430 | * @param kernel the new kernel method to use. Must be one of LINEAR, |
|---|
| 431 | * EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT. |
|---|
| 432 | */ |
|---|
| 433 | public void setWeightingKernel(int kernel) { |
|---|
| 434 | |
|---|
| 435 | if ((kernel != LINEAR) |
|---|
| 436 | && (kernel != EPANECHNIKOV) |
|---|
| 437 | && (kernel != TRICUBE) |
|---|
| 438 | && (kernel != INVERSE) |
|---|
| 439 | && (kernel != GAUSS) |
|---|
| 440 | && (kernel != CONSTANT)) { |
|---|
| 441 | return; |
|---|
| 442 | } |
|---|
| 443 | m_WeightKernel = kernel; |
|---|
| 444 | } |
|---|
| 445 | |
|---|
| 446 | /** |
|---|
| 447 | * Gets the kernel weighting method to use. |
|---|
| 448 | * |
|---|
| 449 | * @return the new kernel method to use. Will be one of LINEAR, |
|---|
| 450 | * EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT. |
|---|
| 451 | */ |
|---|
| 452 | public int getWeightingKernel() { |
|---|
| 453 | |
|---|
| 454 | return m_WeightKernel; |
|---|
| 455 | } |
|---|
| 456 | |
|---|
| 457 | /** |
|---|
| 458 | * Returns the tip text for this property. |
|---|
| 459 | * @return tip text for this property suitable for |
|---|
| 460 | * displaying in the explorer/experimenter gui |
|---|
| 461 | */ |
|---|
| 462 | public String nearestNeighbourSearchAlgorithmTipText() { |
|---|
| 463 | return "The nearest neighbour search algorithm to use (Default: LinearNN)."; |
|---|
| 464 | } |
|---|
| 465 | |
|---|
| 466 | /** |
|---|
| 467 | * Returns the current nearestNeighbourSearch algorithm in use. |
|---|
| 468 | * @return the NearestNeighbourSearch algorithm currently in use. |
|---|
| 469 | */ |
|---|
| 470 | public NearestNeighbourSearch getNearestNeighbourSearchAlgorithm() { |
|---|
| 471 | return m_NNSearch; |
|---|
| 472 | } |
|---|
| 473 | |
|---|
| 474 | /** |
|---|
| 475 | * Sets the nearestNeighbourSearch algorithm to be used for finding nearest |
|---|
| 476 | * neighbour(s). |
|---|
| 477 | * @param nearestNeighbourSearchAlgorithm - The NearestNeighbourSearch class. |
|---|
| 478 | */ |
|---|
| 479 | public void setNearestNeighbourSearchAlgorithm(NearestNeighbourSearch nearestNeighbourSearchAlgorithm) { |
|---|
| 480 | m_NNSearch = nearestNeighbourSearchAlgorithm; |
|---|
| 481 | } |
|---|
| 482 | |
|---|
| 483 | /** |
|---|
| 484 | * Returns default capabilities of the classifier. |
|---|
| 485 | * |
|---|
| 486 | * @return the capabilities of this classifier |
|---|
| 487 | */ |
|---|
| 488 | public Capabilities getCapabilities() { |
|---|
| 489 | Capabilities result; |
|---|
| 490 | |
|---|
| 491 | if (m_Classifier != null) { |
|---|
| 492 | result = m_Classifier.getCapabilities(); |
|---|
| 493 | } else { |
|---|
| 494 | result = super.getCapabilities(); |
|---|
| 495 | } |
|---|
| 496 | |
|---|
| 497 | result.setMinimumNumberInstances(0); |
|---|
| 498 | |
|---|
| 499 | // set dependencies |
|---|
| 500 | for (Capability cap: Capability.values()) |
|---|
| 501 | result.enableDependency(cap); |
|---|
| 502 | |
|---|
| 503 | return result; |
|---|
| 504 | } |
|---|
| 505 | |
|---|
| 506 | /** |
|---|
| 507 | * Generates the classifier. |
|---|
| 508 | * |
|---|
| 509 | * @param instances set of instances serving as training data |
|---|
| 510 | * @throws Exception if the classifier has not been generated successfully |
|---|
| 511 | */ |
|---|
| 512 | public void buildClassifier(Instances instances) throws Exception { |
|---|
| 513 | |
|---|
| 514 | if (!(m_Classifier instanceof WeightedInstancesHandler)) { |
|---|
| 515 | throw new IllegalArgumentException("Classifier must be a " |
|---|
| 516 | + "WeightedInstancesHandler!"); |
|---|
| 517 | } |
|---|
| 518 | |
|---|
| 519 | // can classifier handle the data? |
|---|
| 520 | getCapabilities().testWithFail(instances); |
|---|
| 521 | |
|---|
| 522 | // remove instances with missing class |
|---|
| 523 | instances = new Instances(instances); |
|---|
| 524 | instances.deleteWithMissingClass(); |
|---|
| 525 | |
|---|
| 526 | // only class? -> build ZeroR model |
|---|
| 527 | if (instances.numAttributes() == 1) { |
|---|
| 528 | System.err.println( |
|---|
| 529 | "Cannot build model (only class attribute present in data!), " |
|---|
| 530 | + "using ZeroR model instead!"); |
|---|
| 531 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
|---|
| 532 | m_ZeroR.buildClassifier(instances); |
|---|
| 533 | return; |
|---|
| 534 | } |
|---|
| 535 | else { |
|---|
| 536 | m_ZeroR = null; |
|---|
| 537 | } |
|---|
| 538 | |
|---|
| 539 | m_Train = new Instances(instances, 0, instances.numInstances()); |
|---|
| 540 | |
|---|
| 541 | m_NNSearch.setInstances(m_Train); |
|---|
| 542 | } |
|---|
| 543 | |
|---|
| 544 | /** |
|---|
| 545 | * Adds the supplied instance to the training set. |
|---|
| 546 | * |
|---|
| 547 | * @param instance the instance to add |
|---|
| 548 | * @throws Exception if instance could not be incorporated |
|---|
| 549 | * successfully |
|---|
| 550 | */ |
|---|
| 551 | public void updateClassifier(Instance instance) throws Exception { |
|---|
| 552 | |
|---|
| 553 | if (m_Train == null) { |
|---|
| 554 | throw new Exception("No training instance structure set!"); |
|---|
| 555 | } |
|---|
| 556 | else if (m_Train.equalHeaders(instance.dataset()) == false) { |
|---|
| 557 | throw new Exception("Incompatible instance types\n" + m_Train.equalHeadersMsg(instance.dataset())); |
|---|
| 558 | } |
|---|
| 559 | if (!instance.classIsMissing()) { |
|---|
| 560 | m_NNSearch.update(instance); |
|---|
| 561 | m_Train.add(instance); |
|---|
| 562 | } |
|---|
| 563 | } |
|---|
| 564 | |
|---|
| 565 | /** |
|---|
| 566 | * Calculates the class membership probabilities for the given test instance. |
|---|
| 567 | * |
|---|
| 568 | * @param instance the instance to be classified |
|---|
| 569 | * @return preedicted class probability distribution |
|---|
| 570 | * @throws Exception if distribution can't be computed successfully |
|---|
| 571 | */ |
|---|
| 572 | public double[] distributionForInstance(Instance instance) throws Exception { |
|---|
| 573 | |
|---|
| 574 | // default model? |
|---|
| 575 | if (m_ZeroR != null) { |
|---|
| 576 | return m_ZeroR.distributionForInstance(instance); |
|---|
| 577 | } |
|---|
| 578 | |
|---|
| 579 | if (m_Train.numInstances() == 0) { |
|---|
| 580 | throw new Exception("No training instances!"); |
|---|
| 581 | } |
|---|
| 582 | |
|---|
| 583 | m_NNSearch.addInstanceInfo(instance); |
|---|
| 584 | |
|---|
| 585 | int k = m_Train.numInstances(); |
|---|
| 586 | if( (!m_UseAllK && (m_kNN < k)) /*&& |
|---|
| 587 | !(m_WeightKernel==INVERSE || |
|---|
| 588 | m_WeightKernel==GAUSS)*/ ) { |
|---|
| 589 | k = m_kNN; |
|---|
| 590 | } |
|---|
| 591 | |
|---|
| 592 | Instances neighbours = m_NNSearch.kNearestNeighbours(instance, k); |
|---|
| 593 | double distances[] = m_NNSearch.getDistances(); |
|---|
| 594 | |
|---|
| 595 | if (m_Debug) { |
|---|
| 596 | System.out.println("Test Instance: "+instance); |
|---|
| 597 | System.out.println("For "+k+" kept " + neighbours.numInstances() + " out of " + |
|---|
| 598 | m_Train.numInstances() + " instances."); |
|---|
| 599 | } |
|---|
| 600 | |
|---|
| 601 | //IF LinearNN has skipped so much that <k neighbours are remaining. |
|---|
| 602 | if(k>distances.length) |
|---|
| 603 | k = distances.length; |
|---|
| 604 | |
|---|
| 605 | if (m_Debug) { |
|---|
| 606 | System.out.println("Instance Distances"); |
|---|
| 607 | for (int i = 0; i < distances.length; i++) { |
|---|
| 608 | System.out.println("" + distances[i]); |
|---|
| 609 | } |
|---|
| 610 | } |
|---|
| 611 | |
|---|
| 612 | // Determine the bandwidth |
|---|
| 613 | double bandwidth = distances[k-1]; |
|---|
| 614 | |
|---|
| 615 | // Check for bandwidth zero |
|---|
| 616 | if (bandwidth <= 0) { |
|---|
| 617 | //if the kth distance is zero than give all instances the same weight |
|---|
| 618 | for(int i=0; i < distances.length; i++) |
|---|
| 619 | distances[i] = 1; |
|---|
| 620 | } else { |
|---|
| 621 | // Rescale the distances by the bandwidth |
|---|
| 622 | for (int i = 0; i < distances.length; i++) |
|---|
| 623 | distances[i] = distances[i] / bandwidth; |
|---|
| 624 | } |
|---|
| 625 | |
|---|
| 626 | // Pass the distances through a weighting kernel |
|---|
| 627 | for (int i = 0; i < distances.length; i++) { |
|---|
| 628 | switch (m_WeightKernel) { |
|---|
| 629 | case LINEAR: |
|---|
| 630 | distances[i] = 1.0001 - distances[i]; |
|---|
| 631 | break; |
|---|
| 632 | case EPANECHNIKOV: |
|---|
| 633 | distances[i] = 3/4D*(1.0001 - distances[i]*distances[i]); |
|---|
| 634 | break; |
|---|
| 635 | case TRICUBE: |
|---|
| 636 | distances[i] = Math.pow( (1.0001 - Math.pow(distances[i], 3)), 3 ); |
|---|
| 637 | break; |
|---|
| 638 | case CONSTANT: |
|---|
| 639 | //System.err.println("using constant kernel"); |
|---|
| 640 | distances[i] = 1; |
|---|
| 641 | break; |
|---|
| 642 | case INVERSE: |
|---|
| 643 | distances[i] = 1.0 / (1.0 + distances[i]); |
|---|
| 644 | break; |
|---|
| 645 | case GAUSS: |
|---|
| 646 | distances[i] = Math.exp(-distances[i] * distances[i]); |
|---|
| 647 | break; |
|---|
| 648 | } |
|---|
| 649 | } |
|---|
| 650 | |
|---|
| 651 | if (m_Debug) { |
|---|
| 652 | System.out.println("Instance Weights"); |
|---|
| 653 | for (int i = 0; i < distances.length; i++) { |
|---|
| 654 | System.out.println("" + distances[i]); |
|---|
| 655 | } |
|---|
| 656 | } |
|---|
| 657 | |
|---|
| 658 | // Set the weights on the training data |
|---|
| 659 | double sumOfWeights = 0, newSumOfWeights = 0; |
|---|
| 660 | for (int i = 0; i < distances.length; i++) { |
|---|
| 661 | double weight = distances[i]; |
|---|
| 662 | Instance inst = (Instance) neighbours.instance(i); |
|---|
| 663 | sumOfWeights += inst.weight(); |
|---|
| 664 | newSumOfWeights += inst.weight() * weight; |
|---|
| 665 | inst.setWeight(inst.weight() * weight); |
|---|
| 666 | //weightedTrain.add(newInst); |
|---|
| 667 | } |
|---|
| 668 | |
|---|
| 669 | // Rescale weights |
|---|
| 670 | for (int i = 0; i < neighbours.numInstances(); i++) { |
|---|
| 671 | Instance inst = neighbours.instance(i); |
|---|
| 672 | inst.setWeight(inst.weight() * sumOfWeights / newSumOfWeights); |
|---|
| 673 | } |
|---|
| 674 | |
|---|
| 675 | // Create a weighted classifier |
|---|
| 676 | m_Classifier.buildClassifier(neighbours); |
|---|
| 677 | |
|---|
| 678 | if (m_Debug) { |
|---|
| 679 | System.out.println("Classifying test instance: " + instance); |
|---|
| 680 | System.out.println("Built base classifier:\n" |
|---|
| 681 | + m_Classifier.toString()); |
|---|
| 682 | } |
|---|
| 683 | |
|---|
| 684 | // Return the classifier's predictions |
|---|
| 685 | return m_Classifier.distributionForInstance(instance); |
|---|
| 686 | } |
|---|
| 687 | |
|---|
| 688 | /** |
|---|
| 689 | * Returns a description of this classifier. |
|---|
| 690 | * |
|---|
| 691 | * @return a description of this classifier as a string. |
|---|
| 692 | */ |
|---|
| 693 | public String toString() { |
|---|
| 694 | |
|---|
| 695 | // only ZeroR model? |
|---|
| 696 | if (m_ZeroR != null) { |
|---|
| 697 | StringBuffer buf = new StringBuffer(); |
|---|
| 698 | buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
|---|
| 699 | buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
|---|
| 700 | buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
|---|
| 701 | buf.append(m_ZeroR.toString()); |
|---|
| 702 | return buf.toString(); |
|---|
| 703 | } |
|---|
| 704 | |
|---|
| 705 | if (m_Train == null) { |
|---|
| 706 | return "Locally weighted learning: No model built yet."; |
|---|
| 707 | } |
|---|
| 708 | String result = "Locally weighted learning\n" |
|---|
| 709 | + "===========================\n"; |
|---|
| 710 | |
|---|
| 711 | result += "Using classifier: " + m_Classifier.getClass().getName() + "\n"; |
|---|
| 712 | |
|---|
| 713 | switch (m_WeightKernel) { |
|---|
| 714 | case LINEAR: |
|---|
| 715 | result += "Using linear weighting kernels\n"; |
|---|
| 716 | break; |
|---|
| 717 | case EPANECHNIKOV: |
|---|
| 718 | result += "Using epanechnikov weighting kernels\n"; |
|---|
| 719 | break; |
|---|
| 720 | case TRICUBE: |
|---|
| 721 | result += "Using tricube weighting kernels\n"; |
|---|
| 722 | break; |
|---|
| 723 | case INVERSE: |
|---|
| 724 | result += "Using inverse-distance weighting kernels\n"; |
|---|
| 725 | break; |
|---|
| 726 | case GAUSS: |
|---|
| 727 | result += "Using gaussian weighting kernels\n"; |
|---|
| 728 | break; |
|---|
| 729 | case CONSTANT: |
|---|
| 730 | result += "Using constant weighting kernels\n"; |
|---|
| 731 | break; |
|---|
| 732 | } |
|---|
| 733 | result += "Using " + (m_UseAllK ? "all" : "" + m_kNN) + " neighbours"; |
|---|
| 734 | return result; |
|---|
| 735 | } |
|---|
| 736 | |
|---|
| 737 | /** |
|---|
| 738 | * Returns the revision string. |
|---|
| 739 | * |
|---|
| 740 | * @return the revision |
|---|
| 741 | */ |
|---|
| 742 | public String getRevision() { |
|---|
| 743 | return RevisionUtils.extract("$Revision: 6055 $"); |
|---|
| 744 | } |
|---|
| 745 | |
|---|
| 746 | /** |
|---|
| 747 | * Main method for testing this class. |
|---|
| 748 | * |
|---|
| 749 | * @param argv the options |
|---|
| 750 | */ |
|---|
| 751 | public static void main(String [] argv) { |
|---|
| 752 | runClassifier(new LWL(), argv); |
|---|
| 753 | } |
|---|
| 754 | } |
|---|