1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * KStar.java |
---|
19 | * Copyright (C) 1995-97 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.lazy; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.UpdateableClassifier; |
---|
28 | import weka.classifiers.lazy.kstar.KStarCache; |
---|
29 | import weka.classifiers.lazy.kstar.KStarConstants; |
---|
30 | import weka.classifiers.lazy.kstar.KStarNominalAttribute; |
---|
31 | import weka.classifiers.lazy.kstar.KStarNumericAttribute; |
---|
32 | import weka.core.Attribute; |
---|
33 | import weka.core.Capabilities; |
---|
34 | import weka.core.Instance; |
---|
35 | import weka.core.Instances; |
---|
36 | import weka.core.Option; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.SelectedTag; |
---|
39 | import weka.core.Tag; |
---|
40 | import weka.core.TechnicalInformation; |
---|
41 | import weka.core.TechnicalInformationHandler; |
---|
42 | import weka.core.Utils; |
---|
43 | import weka.core.Capabilities.Capability; |
---|
44 | import weka.core.TechnicalInformation.Field; |
---|
45 | import weka.core.TechnicalInformation.Type; |
---|
46 | |
---|
47 | import java.util.Enumeration; |
---|
48 | import java.util.Random; |
---|
49 | import java.util.Vector; |
---|
50 | |
---|
51 | /** |
---|
52 | <!-- globalinfo-start --> |
---|
53 | * K* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function. It differs from other instance-based learners in that it uses an entropy-based distance function.<br/> |
---|
54 | * <br/> |
---|
55 | * For more information on K*, see<br/> |
---|
56 | * <br/> |
---|
57 | * John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using an Entropic Distance Measure. In: 12th International Conference on Machine Learning, 108-114, 1995. |
---|
58 | * <p/> |
---|
59 | <!-- globalinfo-end --> |
---|
60 | * |
---|
61 | <!-- technical-bibtex-start --> |
---|
62 | * BibTeX: |
---|
63 | * <pre> |
---|
64 | * @inproceedings{Cleary1995, |
---|
65 | * author = {John G. Cleary and Leonard E. Trigg}, |
---|
66 | * booktitle = {12th International Conference on Machine Learning}, |
---|
67 | * pages = {108-114}, |
---|
68 | * title = {K*: An Instance-based Learner Using an Entropic Distance Measure}, |
---|
69 | * year = {1995} |
---|
70 | * } |
---|
71 | * </pre> |
---|
72 | * <p/> |
---|
73 | <!-- technical-bibtex-end --> |
---|
74 | * |
---|
75 | <!-- options-start --> |
---|
76 | * Valid options are: <p/> |
---|
77 | * |
---|
78 | * <pre> -B <num> |
---|
79 | * Manual blend setting (default 20%) |
---|
80 | * </pre> |
---|
81 | * |
---|
82 | * <pre> -E |
---|
83 | * Enable entropic auto-blend setting (symbolic class only) |
---|
84 | * </pre> |
---|
85 | * |
---|
86 | * <pre> -M <char> |
---|
87 | * Specify the missing value treatment mode (default a) |
---|
88 | * Valid options are: a(verage), d(elete), m(axdiff), n(ormal) |
---|
89 | * </pre> |
---|
90 | * |
---|
91 | <!-- options-end --> |
---|
92 | * |
---|
93 | * @author Len Trigg (len@reeltwo.com) |
---|
94 | * @author Abdelaziz Mahoui (am14@cs.waikato.ac.nz) - Java port |
---|
95 | * @version $Revision: 5928 $ |
---|
96 | */ |
---|
97 | public class KStar |
---|
98 | extends AbstractClassifier |
---|
99 | implements KStarConstants, UpdateableClassifier, TechnicalInformationHandler { |
---|
100 | |
---|
101 | /** for serialization */ |
---|
102 | static final long serialVersionUID = 332458330800479083L; |
---|
103 | |
---|
104 | /** The training instances used for classification. */ |
---|
105 | protected Instances m_Train; |
---|
106 | |
---|
107 | /** The number of instances in the dataset */ |
---|
108 | protected int m_NumInstances; |
---|
109 | |
---|
110 | /** The number of class values */ |
---|
111 | protected int m_NumClasses; |
---|
112 | |
---|
113 | /** The number of attributes */ |
---|
114 | protected int m_NumAttributes; |
---|
115 | |
---|
116 | /** The class attribute type */ |
---|
117 | protected int m_ClassType; |
---|
118 | |
---|
119 | /** Table of random class value colomns */ |
---|
120 | protected int [][] m_RandClassCols; |
---|
121 | |
---|
122 | /** Flag turning on and off the computation of random class colomns */ |
---|
123 | protected int m_ComputeRandomCols = ON; |
---|
124 | |
---|
125 | /** Flag turning on and off the initialisation of config variables */ |
---|
126 | protected int m_InitFlag = ON; |
---|
127 | |
---|
128 | /** |
---|
129 | * A custom data structure for caching distinct attribute values |
---|
130 | * and their scale factor or stop parameter. |
---|
131 | */ |
---|
132 | protected KStarCache [] m_Cache; |
---|
133 | |
---|
134 | /** missing value treatment */ |
---|
135 | protected int m_MissingMode = M_AVERAGE; |
---|
136 | |
---|
137 | /** 0 = use specified blend, 1 = entropic blend setting */ |
---|
138 | protected int m_BlendMethod = B_SPHERE; |
---|
139 | |
---|
140 | /** default sphere of influence blend setting */ |
---|
141 | protected int m_GlobalBlend = 20; |
---|
142 | |
---|
143 | /** Define possible missing value handling methods */ |
---|
144 | public static final Tag [] TAGS_MISSING = { |
---|
145 | new Tag(M_DELETE, "Ignore the instances with missing values"), |
---|
146 | new Tag(M_MAXDIFF, "Treat missing values as maximally different"), |
---|
147 | new Tag(M_NORMAL, "Normalize over the attributes"), |
---|
148 | new Tag(M_AVERAGE, "Average column entropy curves") |
---|
149 | }; |
---|
150 | |
---|
151 | /** |
---|
152 | * Returns a string describing classifier |
---|
153 | * @return a description suitable for |
---|
154 | * displaying in the explorer/experimenter gui |
---|
155 | */ |
---|
156 | public String globalInfo() { |
---|
157 | |
---|
158 | return "K* is an instance-based classifier, that is the class of a test " |
---|
159 | + "instance is based upon the class of those training instances " |
---|
160 | + "similar to it, as determined by some similarity function. It differs " |
---|
161 | + "from other instance-based learners in that it uses an entropy-based " |
---|
162 | + "distance function.\n\n" |
---|
163 | + "For more information on K*, see\n\n" |
---|
164 | + getTechnicalInformation().toString(); |
---|
165 | } |
---|
166 | |
---|
167 | /** |
---|
168 | * Returns an instance of a TechnicalInformation object, containing |
---|
169 | * detailed information about the technical background of this class, |
---|
170 | * e.g., paper reference or book this class is based on. |
---|
171 | * |
---|
172 | * @return the technical information about this class |
---|
173 | */ |
---|
174 | public TechnicalInformation getTechnicalInformation() { |
---|
175 | TechnicalInformation result; |
---|
176 | |
---|
177 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
178 | result.setValue(Field.AUTHOR, "John G. Cleary and Leonard E. Trigg"); |
---|
179 | result.setValue(Field.TITLE, "K*: An Instance-based Learner Using an Entropic Distance Measure"); |
---|
180 | result.setValue(Field.BOOKTITLE, "12th International Conference on Machine Learning"); |
---|
181 | result.setValue(Field.YEAR, "1995"); |
---|
182 | result.setValue(Field.PAGES, "108-114"); |
---|
183 | |
---|
184 | return result; |
---|
185 | } |
---|
186 | |
---|
187 | /** |
---|
188 | * Returns default capabilities of the classifier. |
---|
189 | * |
---|
190 | * @return the capabilities of this classifier |
---|
191 | */ |
---|
192 | public Capabilities getCapabilities() { |
---|
193 | Capabilities result = super.getCapabilities(); |
---|
194 | result.disableAll(); |
---|
195 | |
---|
196 | // attributes |
---|
197 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
198 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
199 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
200 | result.enable(Capability.MISSING_VALUES); |
---|
201 | |
---|
202 | // class |
---|
203 | result.enable(Capability.NOMINAL_CLASS); |
---|
204 | result.enable(Capability.NUMERIC_CLASS); |
---|
205 | result.enable(Capability.DATE_CLASS); |
---|
206 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
207 | |
---|
208 | // instances |
---|
209 | result.setMinimumNumberInstances(0); |
---|
210 | |
---|
211 | return result; |
---|
212 | } |
---|
213 | |
---|
214 | /** |
---|
215 | * Generates the classifier. |
---|
216 | * |
---|
217 | * @param instances set of instances serving as training data |
---|
218 | * @throws Exception if the classifier has not been generated successfully |
---|
219 | */ |
---|
220 | public void buildClassifier(Instances instances) throws Exception { |
---|
221 | String debug = "(KStar.buildClassifier) "; |
---|
222 | |
---|
223 | // can classifier handle the data? |
---|
224 | getCapabilities().testWithFail(instances); |
---|
225 | |
---|
226 | // remove instances with missing class |
---|
227 | instances = new Instances(instances); |
---|
228 | instances.deleteWithMissingClass(); |
---|
229 | |
---|
230 | m_Train = new Instances(instances, 0, instances.numInstances()); |
---|
231 | |
---|
232 | // initializes class attributes ** java-speaking! :-) ** |
---|
233 | init_m_Attributes(); |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * Adds the supplied instance to the training set |
---|
238 | * |
---|
239 | * @param instance the instance to add |
---|
240 | * @throws Exception if instance could not be incorporated successfully |
---|
241 | */ |
---|
242 | public void updateClassifier(Instance instance) throws Exception { |
---|
243 | String debug = "(KStar.updateClassifier) "; |
---|
244 | |
---|
245 | if (m_Train.equalHeaders(instance.dataset()) == false) |
---|
246 | throw new Exception("Incompatible instance types\n" + m_Train.equalHeadersMsg(instance.dataset())); |
---|
247 | if ( instance.classIsMissing() ) |
---|
248 | return; |
---|
249 | m_Train.add(instance); |
---|
250 | // update relevant attributes ... |
---|
251 | update_m_Attributes(); |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * Calculates the class membership probabilities for the given test instance. |
---|
256 | * |
---|
257 | * @param instance the instance to be classified |
---|
258 | * @return predicted class probability distribution |
---|
259 | * @throws Exception if an error occurred during the prediction |
---|
260 | */ |
---|
261 | public double [] distributionForInstance(Instance instance) throws Exception { |
---|
262 | |
---|
263 | String debug = "(KStar.distributionForInstance) "; |
---|
264 | double transProb = 0.0, temp = 0.0; |
---|
265 | double [] classProbability = new double[m_NumClasses]; |
---|
266 | double [] predictedValue = new double[1]; |
---|
267 | |
---|
268 | // initialization ... |
---|
269 | for (int i=0; i<classProbability.length; i++) { |
---|
270 | classProbability[i] = 0.0; |
---|
271 | } |
---|
272 | predictedValue[0] = 0.0; |
---|
273 | if (m_InitFlag == ON) { |
---|
274 | // need to compute them only once and will be used for all instances. |
---|
275 | // We are doing this because the evaluation module controls the calls. |
---|
276 | if (m_BlendMethod == B_ENTROPY) { |
---|
277 | generateRandomClassColomns(); |
---|
278 | } |
---|
279 | m_Cache = new KStarCache[m_NumAttributes]; |
---|
280 | for (int i=0; i<m_NumAttributes;i++) { |
---|
281 | m_Cache[i] = new KStarCache(); |
---|
282 | } |
---|
283 | m_InitFlag = OFF; |
---|
284 | // System.out.println("Computing..."); |
---|
285 | } |
---|
286 | // init done. |
---|
287 | Instance trainInstance; |
---|
288 | Enumeration enu = m_Train.enumerateInstances(); |
---|
289 | while ( enu.hasMoreElements() ) { |
---|
290 | trainInstance = (Instance)enu.nextElement(); |
---|
291 | transProb = instanceTransformationProbability(instance, trainInstance); |
---|
292 | switch ( m_ClassType ) |
---|
293 | { |
---|
294 | case Attribute.NOMINAL: |
---|
295 | classProbability[(int)trainInstance.classValue()] += transProb; |
---|
296 | break; |
---|
297 | case Attribute.NUMERIC: |
---|
298 | predictedValue[0] += transProb * trainInstance.classValue(); |
---|
299 | temp += transProb; |
---|
300 | break; |
---|
301 | } |
---|
302 | } |
---|
303 | if (m_ClassType == Attribute.NOMINAL) { |
---|
304 | double sum = Utils.sum(classProbability); |
---|
305 | if (sum <= 0.0) |
---|
306 | for (int i=0; i<classProbability.length; i++) |
---|
307 | classProbability[i] = (double) 1/ (double) m_NumClasses; |
---|
308 | else Utils.normalize(classProbability, sum); |
---|
309 | return classProbability; |
---|
310 | } |
---|
311 | else { |
---|
312 | predictedValue[0] = (temp != 0) ? predictedValue[0] / temp : 0.0; |
---|
313 | return predictedValue; |
---|
314 | } |
---|
315 | } |
---|
316 | |
---|
317 | /** |
---|
318 | * Calculate the probability of the first instance transforming into the |
---|
319 | * second instance: |
---|
320 | * the probability is the product of the transformation probabilities of |
---|
321 | * the attributes normilized over the number of instances used. |
---|
322 | * |
---|
323 | * @param first the test instance |
---|
324 | * @param second the train instance |
---|
325 | * @return transformation probability value |
---|
326 | */ |
---|
327 | private double instanceTransformationProbability(Instance first, |
---|
328 | Instance second) { |
---|
329 | String debug = "(KStar.instanceTransformationProbability) "; |
---|
330 | double transProb = 1.0; |
---|
331 | int numMissAttr = 0; |
---|
332 | for (int i = 0; i < m_NumAttributes; i++) { |
---|
333 | if (i == m_Train.classIndex()) { |
---|
334 | continue; // ignore class attribute |
---|
335 | } |
---|
336 | if (first.isMissing(i)) { // test instance attribute value is missing |
---|
337 | numMissAttr++; |
---|
338 | continue; |
---|
339 | } |
---|
340 | transProb *= attrTransProb(first, second, i); |
---|
341 | // normilize for missing values |
---|
342 | if (numMissAttr != m_NumAttributes) { |
---|
343 | transProb = Math.pow(transProb, (double)m_NumAttributes / |
---|
344 | (m_NumAttributes - numMissAttr)); |
---|
345 | } |
---|
346 | else { // weird case! |
---|
347 | transProb = 0.0; |
---|
348 | } |
---|
349 | } |
---|
350 | // normilize for the train dataset |
---|
351 | return transProb / m_NumInstances; |
---|
352 | } |
---|
353 | |
---|
354 | /** |
---|
355 | * Calculates the transformation probability of the indexed test attribute |
---|
356 | * to the indexed train attribute. |
---|
357 | * |
---|
358 | * @param first the test instance. |
---|
359 | * @param second the train instance. |
---|
360 | * @param col the index of the attribute in the instance. |
---|
361 | * @return the value of the transformation probability. |
---|
362 | */ |
---|
363 | private double attrTransProb(Instance first, Instance second, int col) { |
---|
364 | String debug = "(KStar.attrTransProb)"; |
---|
365 | double transProb = 0.0; |
---|
366 | KStarNominalAttribute ksNominalAttr; |
---|
367 | KStarNumericAttribute ksNumericAttr; |
---|
368 | switch ( m_Train.attribute(col).type() ) |
---|
369 | { |
---|
370 | case Attribute.NOMINAL: |
---|
371 | ksNominalAttr = new KStarNominalAttribute(first, second, col, m_Train, |
---|
372 | m_RandClassCols, |
---|
373 | m_Cache[col]); |
---|
374 | ksNominalAttr.setOptions(m_MissingMode, m_BlendMethod, m_GlobalBlend); |
---|
375 | transProb = ksNominalAttr.transProb(); |
---|
376 | ksNominalAttr = null; |
---|
377 | break; |
---|
378 | |
---|
379 | case Attribute.NUMERIC: |
---|
380 | ksNumericAttr = new KStarNumericAttribute(first, second, col, |
---|
381 | m_Train, m_RandClassCols, |
---|
382 | m_Cache[col]); |
---|
383 | ksNumericAttr.setOptions(m_MissingMode, m_BlendMethod, m_GlobalBlend); |
---|
384 | transProb = ksNumericAttr.transProb(); |
---|
385 | ksNumericAttr = null; |
---|
386 | break; |
---|
387 | } |
---|
388 | return transProb; |
---|
389 | } |
---|
390 | |
---|
391 | /** |
---|
392 | * Returns the tip text for this property |
---|
393 | * @return tip text for this property suitable for |
---|
394 | * displaying in the explorer/experimenter gui |
---|
395 | */ |
---|
396 | public String missingModeTipText() { |
---|
397 | return "Determines how missing attribute values are treated."; |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | * Gets the method to use for handling missing values. Will be one of |
---|
402 | * M_NORMAL, M_AVERAGE, M_MAXDIFF or M_DELETE. |
---|
403 | * |
---|
404 | * @return the method used for handling missing values. |
---|
405 | */ |
---|
406 | public SelectedTag getMissingMode() { |
---|
407 | |
---|
408 | return new SelectedTag(m_MissingMode, TAGS_MISSING); |
---|
409 | } |
---|
410 | |
---|
411 | /** |
---|
412 | * Sets the method to use for handling missing values. Values other than |
---|
413 | * M_NORMAL, M_AVERAGE, M_MAXDIFF and M_DELETE will be ignored. |
---|
414 | * |
---|
415 | * @param newMode the method to use for handling missing values. |
---|
416 | */ |
---|
417 | public void setMissingMode(SelectedTag newMode) { |
---|
418 | |
---|
419 | if (newMode.getTags() == TAGS_MISSING) { |
---|
420 | m_MissingMode = newMode.getSelectedTag().getID(); |
---|
421 | } |
---|
422 | } |
---|
423 | |
---|
424 | /** |
---|
425 | * Returns an enumeration describing the available options. |
---|
426 | * |
---|
427 | * @return an enumeration of all the available options. |
---|
428 | */ |
---|
429 | public Enumeration listOptions() { |
---|
430 | |
---|
431 | Vector optVector = new Vector( 3 ); |
---|
432 | optVector.addElement(new Option( |
---|
433 | "\tManual blend setting (default 20%)\n", |
---|
434 | "B", 1, "-B <num>")); |
---|
435 | optVector.addElement(new Option( |
---|
436 | "\tEnable entropic auto-blend setting (symbolic class only)\n", |
---|
437 | "E", 0, "-E")); |
---|
438 | optVector.addElement(new Option( |
---|
439 | "\tSpecify the missing value treatment mode (default a)\n" |
---|
440 | +"\tValid options are: a(verage), d(elete), m(axdiff), n(ormal)\n", |
---|
441 | "M", 1,"-M <char>")); |
---|
442 | return optVector.elements(); |
---|
443 | } |
---|
444 | |
---|
445 | /** |
---|
446 | * Returns the tip text for this property |
---|
447 | * @return tip text for this property suitable for |
---|
448 | * displaying in the explorer/experimenter gui |
---|
449 | */ |
---|
450 | public String globalBlendTipText() { |
---|
451 | return "The parameter for global blending. Values are restricted to [0,100]."; |
---|
452 | } |
---|
453 | |
---|
454 | /** |
---|
455 | * Set the global blend parameter |
---|
456 | * @param b the value for global blending |
---|
457 | */ |
---|
458 | public void setGlobalBlend(int b) { |
---|
459 | m_GlobalBlend = b; |
---|
460 | if ( m_GlobalBlend > 100 ) { |
---|
461 | m_GlobalBlend = 100; |
---|
462 | } |
---|
463 | if ( m_GlobalBlend < 0 ) { |
---|
464 | m_GlobalBlend = 0; |
---|
465 | } |
---|
466 | } |
---|
467 | |
---|
468 | /** |
---|
469 | * Get the value of the global blend parameter |
---|
470 | * @return the value of the global blend parameter |
---|
471 | */ |
---|
472 | public int getGlobalBlend() { |
---|
473 | return m_GlobalBlend; |
---|
474 | } |
---|
475 | |
---|
476 | /** |
---|
477 | * Returns the tip text for this property |
---|
478 | * @return tip text for this property suitable for |
---|
479 | * displaying in the explorer/experimenter gui |
---|
480 | */ |
---|
481 | public String entropicAutoBlendTipText() { |
---|
482 | return "Whether entropy-based blending is to be used."; |
---|
483 | } |
---|
484 | |
---|
485 | /** |
---|
486 | * Set whether entropic blending is to be used. |
---|
487 | * @param e true if entropic blending is to be used |
---|
488 | */ |
---|
489 | public void setEntropicAutoBlend(boolean e) { |
---|
490 | if (e) { |
---|
491 | m_BlendMethod = B_ENTROPY; |
---|
492 | } else { |
---|
493 | m_BlendMethod = B_SPHERE; |
---|
494 | } |
---|
495 | } |
---|
496 | |
---|
497 | /** |
---|
498 | * Get whether entropic blending being used |
---|
499 | * @return true if entropic blending is used |
---|
500 | */ |
---|
501 | public boolean getEntropicAutoBlend() { |
---|
502 | if (m_BlendMethod == B_ENTROPY) { |
---|
503 | return true; |
---|
504 | } |
---|
505 | |
---|
506 | return false; |
---|
507 | } |
---|
508 | |
---|
509 | /** |
---|
510 | * Parses a given list of options. <p/> |
---|
511 | * |
---|
512 | <!-- options-start --> |
---|
513 | * Valid options are: <p/> |
---|
514 | * |
---|
515 | * <pre> -B <num> |
---|
516 | * Manual blend setting (default 20%) |
---|
517 | * </pre> |
---|
518 | * |
---|
519 | * <pre> -E |
---|
520 | * Enable entropic auto-blend setting (symbolic class only) |
---|
521 | * </pre> |
---|
522 | * |
---|
523 | * <pre> -M <char> |
---|
524 | * Specify the missing value treatment mode (default a) |
---|
525 | * Valid options are: a(verage), d(elete), m(axdiff), n(ormal) |
---|
526 | * </pre> |
---|
527 | * |
---|
528 | <!-- options-end --> |
---|
529 | * |
---|
530 | * @param options the list of options as an array of strings |
---|
531 | * @throws Exception if an option is not supported |
---|
532 | */ |
---|
533 | public void setOptions(String[] options) throws Exception { |
---|
534 | String debug = "(KStar.setOptions)"; |
---|
535 | String blendStr = Utils.getOption('B', options); |
---|
536 | if (blendStr.length() != 0) { |
---|
537 | setGlobalBlend(Integer.parseInt(blendStr)); |
---|
538 | } |
---|
539 | |
---|
540 | setEntropicAutoBlend(Utils.getFlag('E', options)); |
---|
541 | |
---|
542 | String missingModeStr = Utils.getOption('M', options); |
---|
543 | if (missingModeStr.length() != 0) { |
---|
544 | switch ( missingModeStr.charAt(0) ) { |
---|
545 | case 'a': |
---|
546 | setMissingMode(new SelectedTag(M_AVERAGE, TAGS_MISSING)); |
---|
547 | break; |
---|
548 | case 'd': |
---|
549 | setMissingMode(new SelectedTag(M_DELETE, TAGS_MISSING)); |
---|
550 | break; |
---|
551 | case 'm': |
---|
552 | setMissingMode(new SelectedTag(M_MAXDIFF, TAGS_MISSING)); |
---|
553 | break; |
---|
554 | case 'n': |
---|
555 | setMissingMode(new SelectedTag(M_NORMAL, TAGS_MISSING)); |
---|
556 | break; |
---|
557 | default: |
---|
558 | setMissingMode(new SelectedTag(M_AVERAGE, TAGS_MISSING)); |
---|
559 | } |
---|
560 | } |
---|
561 | Utils.checkForRemainingOptions(options); |
---|
562 | } |
---|
563 | |
---|
564 | |
---|
565 | /** |
---|
566 | * Gets the current settings of K*. |
---|
567 | * |
---|
568 | * @return an array of strings suitable for passing to setOptions() |
---|
569 | */ |
---|
570 | public String [] getOptions() { |
---|
571 | // -B <num> -E -M <char> |
---|
572 | String [] options = new String [ 5 ]; |
---|
573 | int itr = 0; |
---|
574 | options[itr++] = "-B"; |
---|
575 | options[itr++] = "" + m_GlobalBlend; |
---|
576 | |
---|
577 | if (getEntropicAutoBlend()) { |
---|
578 | options[itr++] = "-E"; |
---|
579 | } |
---|
580 | |
---|
581 | options[itr++] = "-M"; |
---|
582 | if (m_MissingMode == M_AVERAGE) { |
---|
583 | options[itr++] = "" + "a"; |
---|
584 | } |
---|
585 | else if (m_MissingMode == M_DELETE) { |
---|
586 | options[itr++] = "" + "d"; |
---|
587 | } |
---|
588 | else if (m_MissingMode == M_MAXDIFF) { |
---|
589 | options[itr++] = "" + "m"; |
---|
590 | } |
---|
591 | else if (m_MissingMode == M_NORMAL) { |
---|
592 | options[itr++] = "" + "n"; |
---|
593 | } |
---|
594 | while (itr < options.length) { |
---|
595 | options[itr++] = ""; |
---|
596 | } |
---|
597 | return options; |
---|
598 | } |
---|
599 | |
---|
600 | /** |
---|
601 | * Returns a description of this classifier. |
---|
602 | * |
---|
603 | * @return a description of this classifier as a string. |
---|
604 | */ |
---|
605 | public String toString() { |
---|
606 | StringBuffer st = new StringBuffer(); |
---|
607 | st.append("KStar Beta Verion (0.1b).\n" |
---|
608 | +"Copyright (c) 1995-97 by Len Trigg (trigg@cs.waikato.ac.nz).\n" |
---|
609 | +"Java port to Weka by Abdelaziz Mahoui " |
---|
610 | +"(am14@cs.waikato.ac.nz).\n\nKStar options : "); |
---|
611 | String [] ops = getOptions(); |
---|
612 | for (int i=0;i<ops.length;i++) { |
---|
613 | st.append(ops[i]+' '); |
---|
614 | } |
---|
615 | return st.toString(); |
---|
616 | } |
---|
617 | |
---|
618 | /** |
---|
619 | * Main method for testing this class. |
---|
620 | * |
---|
621 | * @param argv should contain command line options (see setOptions) |
---|
622 | */ |
---|
623 | public static void main(String [] argv) { |
---|
624 | runClassifier(new KStar(), argv); |
---|
625 | } |
---|
626 | |
---|
627 | /** |
---|
628 | * Initializes the m_Attributes of the class. |
---|
629 | */ |
---|
630 | private void init_m_Attributes() { |
---|
631 | try { |
---|
632 | m_NumInstances = m_Train.numInstances(); |
---|
633 | m_NumClasses = m_Train.numClasses(); |
---|
634 | m_NumAttributes = m_Train.numAttributes(); |
---|
635 | m_ClassType = m_Train.classAttribute().type(); |
---|
636 | m_InitFlag = ON; |
---|
637 | } catch(Exception e) { |
---|
638 | e.printStackTrace(); |
---|
639 | } |
---|
640 | } |
---|
641 | |
---|
642 | /** |
---|
643 | * Updates the m_attributes of the class. |
---|
644 | */ |
---|
645 | private void update_m_Attributes() { |
---|
646 | m_NumInstances = m_Train.numInstances(); |
---|
647 | m_InitFlag = ON; |
---|
648 | } |
---|
649 | |
---|
650 | /** |
---|
651 | * Note: for Nominal Class Only! |
---|
652 | * Generates a set of random versions of the class colomn. |
---|
653 | */ |
---|
654 | private void generateRandomClassColomns() { |
---|
655 | String debug = "(KStar.generateRandomClassColomns)"; |
---|
656 | Random generator = new Random(42); |
---|
657 | // Random generator = new Random(); |
---|
658 | m_RandClassCols = new int [NUM_RAND_COLS+1][]; |
---|
659 | int [] classvals = classValues(); |
---|
660 | for (int i=0; i < NUM_RAND_COLS; i++) { |
---|
661 | // generate a randomized version of the class colomn |
---|
662 | m_RandClassCols[i] = randomize(classvals, generator); |
---|
663 | } |
---|
664 | // original colomn is preserved in colomn NUM_RAND_COLS |
---|
665 | m_RandClassCols[NUM_RAND_COLS] = classvals; |
---|
666 | } |
---|
667 | |
---|
668 | /** |
---|
669 | * Note: for Nominal Class Only! |
---|
670 | * Returns an array of the class values |
---|
671 | * |
---|
672 | * @return an array of class values |
---|
673 | */ |
---|
674 | private int [] classValues() { |
---|
675 | String debug = "(KStar.classValues)"; |
---|
676 | int [] classval = new int[m_NumInstances]; |
---|
677 | for (int i=0; i < m_NumInstances; i++) { |
---|
678 | try { |
---|
679 | classval[i] = (int)m_Train.instance(i).classValue(); |
---|
680 | } catch (Exception ex) { |
---|
681 | ex.printStackTrace(); |
---|
682 | } |
---|
683 | } |
---|
684 | return classval; |
---|
685 | } |
---|
686 | |
---|
687 | /** |
---|
688 | * Returns a copy of the array with its elements randomly redistributed. |
---|
689 | * |
---|
690 | * @param array the array to randomize. |
---|
691 | * @param generator the random number generator to use |
---|
692 | * @return a copy of the array with its elements randomly redistributed. |
---|
693 | */ |
---|
694 | private int [] randomize(int [] array, Random generator) { |
---|
695 | String debug = "(KStar.randomize)"; |
---|
696 | int index; |
---|
697 | int temp; |
---|
698 | int [] newArray = new int[array.length]; |
---|
699 | System.arraycopy(array, 0, newArray, 0, array.length); |
---|
700 | for (int j = newArray.length - 1; j > 0; j--) { |
---|
701 | index = (int) ( generator.nextDouble() * (double)j ); |
---|
702 | temp = newArray[j]; |
---|
703 | newArray[j] = newArray[index]; |
---|
704 | newArray[index] = temp; |
---|
705 | } |
---|
706 | return newArray; |
---|
707 | } |
---|
708 | |
---|
709 | /** |
---|
710 | * Returns the revision string. |
---|
711 | * |
---|
712 | * @return the revision |
---|
713 | */ |
---|
714 | public String getRevision() { |
---|
715 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
716 | } |
---|
717 | |
---|
718 | } // class end |
---|
719 | |
---|