| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or (at |
|---|
| 5 | * your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, but |
|---|
| 8 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|---|
| 10 | * General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
|---|
| 15 | |
|---|
| 16 | /* |
|---|
| 17 | * NormalMixture.java |
|---|
| 18 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
|---|
| 19 | * |
|---|
| 20 | */ |
|---|
| 21 | |
|---|
| 22 | package weka.classifiers.functions.pace; |
|---|
| 23 | |
|---|
| 24 | import java.util.Random; |
|---|
| 25 | |
|---|
| 26 | import weka.core.RevisionUtils; |
|---|
| 27 | import weka.core.matrix.DoubleVector; |
|---|
| 28 | import weka.core.matrix.Maths; |
|---|
| 29 | |
|---|
| 30 | /** |
|---|
| 31 | * Class for manipulating normal mixture distributions. <p> |
|---|
| 32 | * |
|---|
| 33 | * For more information see: <p/> |
|---|
| 34 | * |
|---|
| 35 | <!-- technical-plaintext-start --> |
|---|
| 36 | * Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand.<br/> |
|---|
| 37 | * <br/> |
|---|
| 38 | * Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002. |
|---|
| 39 | <!-- technical-plaintext-end --> |
|---|
| 40 | * |
|---|
| 41 | <!-- technical-bibtex-start --> |
|---|
| 42 | * BibTeX: |
|---|
| 43 | * <pre> |
|---|
| 44 | * @phdthesis{Wang2000, |
|---|
| 45 | * address = {Hamilton, New Zealand}, |
|---|
| 46 | * author = {Wang, Y}, |
|---|
| 47 | * school = {Department of Computer Science, University of Waikato}, |
|---|
| 48 | * title = {A new approach to fitting linear models in high dimensional spaces}, |
|---|
| 49 | * year = {2000} |
|---|
| 50 | * } |
|---|
| 51 | * |
|---|
| 52 | * @inproceedings{Wang2002, |
|---|
| 53 | * address = {Sydney, Australia}, |
|---|
| 54 | * author = {Wang, Y. and Witten, I. H.}, |
|---|
| 55 | * booktitle = {Proceedings of the Nineteenth International Conference in Machine Learning}, |
|---|
| 56 | * pages = {650-657}, |
|---|
| 57 | * title = {Modeling for optimal probability prediction}, |
|---|
| 58 | * year = {2002} |
|---|
| 59 | * } |
|---|
| 60 | * </pre> |
|---|
| 61 | * <p/> |
|---|
| 62 | <!-- technical-bibtex-end --> |
|---|
| 63 | * |
|---|
| 64 | * @author Yong Wang (yongwang@cs.waikato.ac.nz) |
|---|
| 65 | * @version $Revision: 1.5 $ |
|---|
| 66 | */ |
|---|
| 67 | public class NormalMixture |
|---|
| 68 | extends MixtureDistribution { |
|---|
| 69 | |
|---|
| 70 | /** the separating threshold */ |
|---|
| 71 | protected double separatingThreshold = 0.05; |
|---|
| 72 | |
|---|
| 73 | /** the triming thresholding */ |
|---|
| 74 | protected double trimingThreshold = 0.7; |
|---|
| 75 | |
|---|
| 76 | protected double fittingIntervalLength = 3; |
|---|
| 77 | |
|---|
| 78 | /** |
|---|
| 79 | * Contructs an empty NormalMixture |
|---|
| 80 | */ |
|---|
| 81 | public NormalMixture() {} |
|---|
| 82 | |
|---|
| 83 | /** |
|---|
| 84 | * Gets the separating threshold value. This value is used by the method |
|---|
| 85 | * separatable |
|---|
| 86 | * |
|---|
| 87 | * @return the separating threshold |
|---|
| 88 | */ |
|---|
| 89 | public double getSeparatingThreshold(){ |
|---|
| 90 | return separatingThreshold; |
|---|
| 91 | } |
|---|
| 92 | |
|---|
| 93 | /** |
|---|
| 94 | * Sets the separating threshold value |
|---|
| 95 | * |
|---|
| 96 | * @param t the threshold value |
|---|
| 97 | */ |
|---|
| 98 | public void setSeparatingThreshold( double t ){ |
|---|
| 99 | separatingThreshold = t; |
|---|
| 100 | } |
|---|
| 101 | |
|---|
| 102 | /** |
|---|
| 103 | * Gets the triming thresholding value. This value is usef by the method |
|---|
| 104 | * trim. |
|---|
| 105 | * |
|---|
| 106 | * @return the triming thresholding |
|---|
| 107 | */ |
|---|
| 108 | public double getTrimingThreshold(){ |
|---|
| 109 | return trimingThreshold; |
|---|
| 110 | } |
|---|
| 111 | |
|---|
| 112 | /** |
|---|
| 113 | * Sets the triming thresholding value. |
|---|
| 114 | * |
|---|
| 115 | * @param t the triming thresholding |
|---|
| 116 | */ |
|---|
| 117 | public void setTrimingThreshold( double t ){ |
|---|
| 118 | trimingThreshold = t; |
|---|
| 119 | } |
|---|
| 120 | |
|---|
| 121 | /** |
|---|
| 122 | * Return true if a value can be considered for mixture estimatino |
|---|
| 123 | * separately from the data indexed between i0 and i1 |
|---|
| 124 | * |
|---|
| 125 | * @param data the data supposedly generated from the mixture |
|---|
| 126 | * @param i0 the index of the first element in the group |
|---|
| 127 | * @param i1 the index of the last element in the group |
|---|
| 128 | * @param x the value |
|---|
| 129 | * @return true if the value can be considered |
|---|
| 130 | */ |
|---|
| 131 | public boolean separable( DoubleVector data, int i0, int i1, double x ) { |
|---|
| 132 | double p = 0; |
|---|
| 133 | for( int i = i0; i <= i1; i++ ) { |
|---|
| 134 | p += Maths.pnorm( - Math.abs(x - data.get(i)) ); |
|---|
| 135 | } |
|---|
| 136 | if( p < separatingThreshold ) return true; |
|---|
| 137 | else return false; |
|---|
| 138 | } |
|---|
| 139 | |
|---|
| 140 | /** |
|---|
| 141 | * Contructs the set of support points for mixture estimation. |
|---|
| 142 | * |
|---|
| 143 | * @param data the data supposedly generated from the mixture |
|---|
| 144 | * @param ne the number of extra data that are suppposedly discarded |
|---|
| 145 | * earlier and not passed into here |
|---|
| 146 | * @return the set of support points |
|---|
| 147 | */ |
|---|
| 148 | public DoubleVector supportPoints( DoubleVector data, int ne ) { |
|---|
| 149 | if( data.size() < 2 ) |
|---|
| 150 | throw new IllegalArgumentException("data size < 2"); |
|---|
| 151 | |
|---|
| 152 | return data.copy(); |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | /** |
|---|
| 156 | * Contructs the set of fitting intervals for mixture estimation. |
|---|
| 157 | * |
|---|
| 158 | * @param data the data supposedly generated from the mixture |
|---|
| 159 | * @return the set of fitting intervals |
|---|
| 160 | */ |
|---|
| 161 | public PaceMatrix fittingIntervals( DoubleVector data ) { |
|---|
| 162 | DoubleVector left = data.cat( data.minus( fittingIntervalLength ) ); |
|---|
| 163 | DoubleVector right = data.plus( fittingIntervalLength ).cat( data ); |
|---|
| 164 | |
|---|
| 165 | PaceMatrix a = new PaceMatrix(left.size(), 2); |
|---|
| 166 | |
|---|
| 167 | a.setMatrix(0, left.size()-1, 0, left); |
|---|
| 168 | a.setMatrix(0, right.size()-1, 1, right); |
|---|
| 169 | |
|---|
| 170 | return a; |
|---|
| 171 | } |
|---|
| 172 | |
|---|
| 173 | /** |
|---|
| 174 | * Contructs the probability matrix for mixture estimation, given a set |
|---|
| 175 | * of support points and a set of intervals. |
|---|
| 176 | * |
|---|
| 177 | * @param s the set of support points |
|---|
| 178 | * @param intervals the intervals |
|---|
| 179 | * @return the probability matrix |
|---|
| 180 | */ |
|---|
| 181 | public PaceMatrix probabilityMatrix( DoubleVector s, |
|---|
| 182 | PaceMatrix intervals ) { |
|---|
| 183 | |
|---|
| 184 | int ns = s.size(); |
|---|
| 185 | int nr = intervals.getRowDimension(); |
|---|
| 186 | PaceMatrix p = new PaceMatrix(nr, ns); |
|---|
| 187 | |
|---|
| 188 | for( int i = 0; i < nr; i++ ) { |
|---|
| 189 | for( int j = 0; j < ns; j++ ) { |
|---|
| 190 | p.set( i, j, |
|---|
| 191 | Maths.pnorm( intervals.get(i, 1), s.get(j), 1 ) - |
|---|
| 192 | Maths.pnorm( intervals.get(i, 0), s.get(j), 1 ) ); |
|---|
| 193 | } |
|---|
| 194 | } |
|---|
| 195 | |
|---|
| 196 | return p; |
|---|
| 197 | } |
|---|
| 198 | |
|---|
| 199 | /** |
|---|
| 200 | * Returns the empirical Bayes estimate of a single value. |
|---|
| 201 | * |
|---|
| 202 | * @param x the value |
|---|
| 203 | * @return the empirical Bayes estimate |
|---|
| 204 | */ |
|---|
| 205 | public double empiricalBayesEstimate ( double x ) { |
|---|
| 206 | if( Math.abs(x) > 10 ) return x; // pratical consideration; modify later |
|---|
| 207 | DoubleVector d = |
|---|
| 208 | Maths.dnormLog( x, mixingDistribution.getPointValues(), 1 ); |
|---|
| 209 | |
|---|
| 210 | d.minusEquals( d.max() ); |
|---|
| 211 | d = d.map("java.lang.Math", "exp"); |
|---|
| 212 | d.timesEquals( mixingDistribution.getFunctionValues() ); |
|---|
| 213 | return mixingDistribution.getPointValues().innerProduct( d ) / d.sum(); |
|---|
| 214 | } |
|---|
| 215 | |
|---|
| 216 | /** |
|---|
| 217 | * Returns the empirical Bayes estimate of a vector. |
|---|
| 218 | * |
|---|
| 219 | * @param x the vector |
|---|
| 220 | * @return the empirical Bayes estimate |
|---|
| 221 | */ |
|---|
| 222 | public DoubleVector empiricalBayesEstimate( DoubleVector x ) { |
|---|
| 223 | DoubleVector pred = new DoubleVector( x.size() ); |
|---|
| 224 | for(int i = 0; i < x.size(); i++ ) |
|---|
| 225 | pred.set(i, empiricalBayesEstimate(x.get(i)) ); |
|---|
| 226 | trim( pred ); |
|---|
| 227 | return pred; |
|---|
| 228 | } |
|---|
| 229 | |
|---|
| 230 | /** |
|---|
| 231 | * Returns the optimal nested model estimate of a vector. |
|---|
| 232 | * |
|---|
| 233 | * @param x the vector |
|---|
| 234 | * @return the optimal nested model estimate |
|---|
| 235 | */ |
|---|
| 236 | public DoubleVector nestedEstimate( DoubleVector x ) { |
|---|
| 237 | |
|---|
| 238 | DoubleVector chf = new DoubleVector( x.size() ); |
|---|
| 239 | for(int i = 0; i < x.size(); i++ ) chf.set( i, hf( x.get(i) ) ); |
|---|
| 240 | chf.cumulateInPlace(); |
|---|
| 241 | int index = chf.indexOfMax(); |
|---|
| 242 | DoubleVector copy = x.copy(); |
|---|
| 243 | if( index < x.size()-1 ) copy.set( index + 1, x.size()-1, 0 ); |
|---|
| 244 | trim( copy ); |
|---|
| 245 | return copy; |
|---|
| 246 | } |
|---|
| 247 | |
|---|
| 248 | /** |
|---|
| 249 | * Returns the estimate of optimal subset selection. |
|---|
| 250 | * |
|---|
| 251 | * @param x the vector |
|---|
| 252 | * @return the estimate of optimal subset selection |
|---|
| 253 | */ |
|---|
| 254 | public DoubleVector subsetEstimate( DoubleVector x ) { |
|---|
| 255 | |
|---|
| 256 | DoubleVector h = h( x ); |
|---|
| 257 | DoubleVector copy = x.copy(); |
|---|
| 258 | for( int i = 0; i < x.size(); i++ ) |
|---|
| 259 | if( h.get(i) <= 0 ) copy.set(i, 0); |
|---|
| 260 | trim( copy ); |
|---|
| 261 | return copy; |
|---|
| 262 | } |
|---|
| 263 | |
|---|
| 264 | /** |
|---|
| 265 | * Trims the small values of the estaimte |
|---|
| 266 | * |
|---|
| 267 | * @param x the estimate vector |
|---|
| 268 | */ |
|---|
| 269 | public void trim( DoubleVector x ) { |
|---|
| 270 | for(int i = 0; i < x.size(); i++ ) { |
|---|
| 271 | if( Math.abs(x.get(i)) <= trimingThreshold ) x.set(i, 0); |
|---|
| 272 | } |
|---|
| 273 | } |
|---|
| 274 | |
|---|
| 275 | /** |
|---|
| 276 | * Computes the value of h(x) / f(x) given the mixture. The |
|---|
| 277 | * implementation avoided overflow. |
|---|
| 278 | * |
|---|
| 279 | * @param x the value |
|---|
| 280 | * @return the value of h(x) / f(x) |
|---|
| 281 | */ |
|---|
| 282 | public double hf( double x ) { |
|---|
| 283 | DoubleVector points = mixingDistribution.getPointValues(); |
|---|
| 284 | DoubleVector values = mixingDistribution.getFunctionValues(); |
|---|
| 285 | |
|---|
| 286 | DoubleVector d = Maths.dnormLog( x, points, 1 ); |
|---|
| 287 | d.minusEquals( d.max() ); |
|---|
| 288 | |
|---|
| 289 | d = (DoubleVector) d.map("java.lang.Math", "exp"); |
|---|
| 290 | d.timesEquals( values ); |
|---|
| 291 | |
|---|
| 292 | return ((DoubleVector) points.times(2*x).minusEquals(x*x)) |
|---|
| 293 | .innerProduct( d ) / d.sum(); |
|---|
| 294 | } |
|---|
| 295 | |
|---|
| 296 | /** |
|---|
| 297 | * Computes the value of h(x) given the mixture. |
|---|
| 298 | * |
|---|
| 299 | * @param x the value |
|---|
| 300 | * @return the value of h(x) |
|---|
| 301 | */ |
|---|
| 302 | public double h( double x ) { |
|---|
| 303 | DoubleVector points = mixingDistribution.getPointValues(); |
|---|
| 304 | DoubleVector values = mixingDistribution.getFunctionValues(); |
|---|
| 305 | DoubleVector d = (DoubleVector) Maths.dnorm( x, points, 1 ).timesEquals( values ); |
|---|
| 306 | return ((DoubleVector) points.times(2*x).minusEquals(x*x)) |
|---|
| 307 | .innerProduct( d ); |
|---|
| 308 | } |
|---|
| 309 | |
|---|
| 310 | /** |
|---|
| 311 | * Computes the value of h(x) given the mixture, where x is a vector. |
|---|
| 312 | * |
|---|
| 313 | * @param x the vector |
|---|
| 314 | * @return the value of h(x) |
|---|
| 315 | */ |
|---|
| 316 | public DoubleVector h( DoubleVector x ) { |
|---|
| 317 | DoubleVector h = new DoubleVector( x.size() ); |
|---|
| 318 | for( int i = 0; i < x.size(); i++ ) |
|---|
| 319 | h.set( i, h( x.get(i) ) ); |
|---|
| 320 | return h; |
|---|
| 321 | } |
|---|
| 322 | |
|---|
| 323 | /** |
|---|
| 324 | * Computes the value of f(x) given the mixture. |
|---|
| 325 | * |
|---|
| 326 | * @param x the value |
|---|
| 327 | * @return the value of f(x) |
|---|
| 328 | */ |
|---|
| 329 | public double f( double x ) { |
|---|
| 330 | DoubleVector points = mixingDistribution.getPointValues(); |
|---|
| 331 | DoubleVector values = mixingDistribution.getFunctionValues(); |
|---|
| 332 | return Maths.dchisq( x, points ).timesEquals( values ).sum(); |
|---|
| 333 | } |
|---|
| 334 | |
|---|
| 335 | /** |
|---|
| 336 | * Computes the value of f(x) given the mixture, where x is a vector. |
|---|
| 337 | * |
|---|
| 338 | * @param x the vector |
|---|
| 339 | * @return the value of f(x) |
|---|
| 340 | */ |
|---|
| 341 | public DoubleVector f( DoubleVector x ) { |
|---|
| 342 | DoubleVector f = new DoubleVector( x.size() ); |
|---|
| 343 | for( int i = 0; i < x.size(); i++ ) |
|---|
| 344 | f.set( i, h( f.get(i) ) ); |
|---|
| 345 | return f; |
|---|
| 346 | } |
|---|
| 347 | |
|---|
| 348 | /** |
|---|
| 349 | * Converts to a string |
|---|
| 350 | * |
|---|
| 351 | * @return a string representation |
|---|
| 352 | */ |
|---|
| 353 | public String toString() { |
|---|
| 354 | return mixingDistribution.toString(); |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | /** |
|---|
| 358 | * Returns the revision string. |
|---|
| 359 | * |
|---|
| 360 | * @return the revision |
|---|
| 361 | */ |
|---|
| 362 | public String getRevision() { |
|---|
| 363 | return RevisionUtils.extract("$Revision: 1.5 $"); |
|---|
| 364 | } |
|---|
| 365 | |
|---|
| 366 | /** |
|---|
| 367 | * Method to test this class |
|---|
| 368 | * |
|---|
| 369 | * @param args the commandline arguments - ignored |
|---|
| 370 | */ |
|---|
| 371 | public static void main(String args[]) { |
|---|
| 372 | int n1 = 50; |
|---|
| 373 | int n2 = 50; |
|---|
| 374 | double mu1 = 0; |
|---|
| 375 | double mu2 = 5; |
|---|
| 376 | DoubleVector a = Maths.rnorm( n1, mu1, 1, new Random() ); |
|---|
| 377 | a = a.cat( Maths.rnorm( n2, mu2, 1, new Random() ) ); |
|---|
| 378 | DoubleVector means = (new DoubleVector( n1, mu1 )).cat(new DoubleVector(n2, mu2)); |
|---|
| 379 | |
|---|
| 380 | System.out.println("=========================================================="); |
|---|
| 381 | System.out.println("This is to test the estimation of the mixing\n" + |
|---|
| 382 | "distribution of the mixture of unit variance normal\n" + |
|---|
| 383 | "distributions. The example mixture used is of the form: \n\n" + |
|---|
| 384 | " 0.5 * N(mu1, 1) + 0.5 * N(mu2, 1)\n" ); |
|---|
| 385 | |
|---|
| 386 | System.out.println("It also tests three estimators: the subset\n" + |
|---|
| 387 | "selector, the nested model selector, and the empirical Bayes\n" + |
|---|
| 388 | "estimator. Quadratic losses of the estimators are given, \n" + |
|---|
| 389 | "and are taken as the measure of their performance."); |
|---|
| 390 | System.out.println("=========================================================="); |
|---|
| 391 | System.out.println( "mu1 = " + mu1 + " mu2 = " + mu2 +"\n" ); |
|---|
| 392 | |
|---|
| 393 | System.out.println( a.size() + " observations are: \n\n" + a ); |
|---|
| 394 | |
|---|
| 395 | System.out.println( "\nQuadratic loss of the raw data (i.e., the MLE) = " + |
|---|
| 396 | a.sum2( means ) ); |
|---|
| 397 | System.out.println("=========================================================="); |
|---|
| 398 | |
|---|
| 399 | // find the mixing distribution |
|---|
| 400 | NormalMixture d = new NormalMixture(); |
|---|
| 401 | d.fit( a, NNMMethod ); |
|---|
| 402 | System.out.println( "The estimated mixing distribution is:\n" + d ); |
|---|
| 403 | |
|---|
| 404 | DoubleVector pred = d.nestedEstimate( a.rev() ).rev(); |
|---|
| 405 | System.out.println( "\nThe Nested Estimate = \n" + pred ); |
|---|
| 406 | System.out.println( "Quadratic loss = " + pred.sum2( means ) ); |
|---|
| 407 | |
|---|
| 408 | pred = d.subsetEstimate( a ); |
|---|
| 409 | System.out.println( "\nThe Subset Estimate = \n" + pred ); |
|---|
| 410 | System.out.println( "Quadratic loss = " + pred.sum2( means ) ); |
|---|
| 411 | |
|---|
| 412 | pred = d.empiricalBayesEstimate( a ); |
|---|
| 413 | System.out.println( "\nThe Empirical Bayes Estimate = \n" + pred ); |
|---|
| 414 | System.out.println( "Quadratic loss = " + pred.sum2( means ) ); |
|---|
| 415 | |
|---|
| 416 | } |
|---|
| 417 | } |
|---|