1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or (at |
---|
5 | * your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, but |
---|
8 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
10 | * General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
---|
15 | |
---|
16 | /* |
---|
17 | * MixtureDistribution.java |
---|
18 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.functions.pace; |
---|
23 | |
---|
24 | import weka.core.RevisionHandler; |
---|
25 | import weka.core.TechnicalInformation; |
---|
26 | import weka.core.TechnicalInformationHandler; |
---|
27 | import weka.core.TechnicalInformation.Field; |
---|
28 | import weka.core.TechnicalInformation.Type; |
---|
29 | import weka.core.matrix.DoubleVector; |
---|
30 | import weka.core.matrix.IntVector; |
---|
31 | |
---|
32 | /** |
---|
33 | * Abtract class for manipulating mixture distributions. <p> |
---|
34 | * |
---|
35 | * REFERENCES <p> |
---|
36 | * |
---|
37 | * Wang, Y. (2000). "A new approach to fitting linear models in high |
---|
38 | * dimensional spaces." PhD Thesis. Department of Computer Science, |
---|
39 | * University of Waikato, New Zealand. <p> |
---|
40 | * |
---|
41 | * Wang, Y. and Witten, I. H. (2002). "Modeling for optimal probability |
---|
42 | * prediction." Proceedings of ICML'2002. Sydney. <p> |
---|
43 | * |
---|
44 | * @author Yong Wang (yongwang@cs.waikato.ac.nz) |
---|
45 | * @version $Revision: 1.5 $ */ |
---|
46 | |
---|
47 | public abstract class MixtureDistribution |
---|
48 | implements TechnicalInformationHandler, RevisionHandler { |
---|
49 | |
---|
50 | protected DiscreteFunction mixingDistribution; |
---|
51 | |
---|
52 | /** The nonnegative-measure-based method */ |
---|
53 | public static final int NNMMethod = 1; |
---|
54 | |
---|
55 | /** The probability-measure-based method */ |
---|
56 | public static final int PMMethod = 2; |
---|
57 | |
---|
58 | // The CDF-based method |
---|
59 | // public static final int CDFMethod = 3; |
---|
60 | |
---|
61 | // The method based on the Kolmogrov and von Mises measure |
---|
62 | // public static final int ModifiedCDFMethod = 4; |
---|
63 | |
---|
64 | /** |
---|
65 | * Returns an instance of a TechnicalInformation object, containing |
---|
66 | * detailed information about the technical background of this class, |
---|
67 | * e.g., paper reference or book this class is based on. |
---|
68 | * |
---|
69 | * @return the technical information about this class |
---|
70 | */ |
---|
71 | public TechnicalInformation getTechnicalInformation() { |
---|
72 | TechnicalInformation result; |
---|
73 | TechnicalInformation additional; |
---|
74 | |
---|
75 | result = new TechnicalInformation(Type.PHDTHESIS); |
---|
76 | result.setValue(Field.AUTHOR, "Wang, Y"); |
---|
77 | result.setValue(Field.YEAR, "2000"); |
---|
78 | result.setValue(Field.TITLE, "A new approach to fitting linear models in high dimensional spaces"); |
---|
79 | result.setValue(Field.SCHOOL, "Department of Computer Science, University of Waikato"); |
---|
80 | result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); |
---|
81 | |
---|
82 | additional = result.add(Type.INPROCEEDINGS); |
---|
83 | additional.setValue(Field.AUTHOR, "Wang, Y. and Witten, I. H."); |
---|
84 | additional.setValue(Field.YEAR, "2002"); |
---|
85 | additional.setValue(Field.TITLE, "Modeling for optimal probability prediction"); |
---|
86 | additional.setValue(Field.BOOKTITLE, "Proceedings of the Nineteenth International Conference in Machine Learning"); |
---|
87 | additional.setValue(Field.YEAR, "2002"); |
---|
88 | additional.setValue(Field.PAGES, "650-657"); |
---|
89 | additional.setValue(Field.ADDRESS, "Sydney, Australia"); |
---|
90 | |
---|
91 | return result; |
---|
92 | } |
---|
93 | |
---|
94 | /** |
---|
95 | * Gets the mixing distribution |
---|
96 | * |
---|
97 | * @return the mixing distribution |
---|
98 | */ |
---|
99 | public DiscreteFunction getMixingDistribution() { |
---|
100 | return mixingDistribution; |
---|
101 | } |
---|
102 | |
---|
103 | /** Sets the mixing distribution |
---|
104 | * @param d the mixing distribution |
---|
105 | */ |
---|
106 | public void setMixingDistribution( DiscreteFunction d ) { |
---|
107 | mixingDistribution = d; |
---|
108 | } |
---|
109 | |
---|
110 | /** Fits the mixture (or mixing) distribution to the data. The default |
---|
111 | * method is the nonnegative-measure-based method. |
---|
112 | * @param data the data, supposedly generated from the mixture model */ |
---|
113 | public void fit( DoubleVector data ) { |
---|
114 | fit( data, NNMMethod ); |
---|
115 | } |
---|
116 | |
---|
117 | /** Fits the mixture (or mixing) distribution to the data. |
---|
118 | * @param data the data supposedly generated from the mixture |
---|
119 | * @param method the method to be used. Refer to the static final |
---|
120 | * variables of this class. */ |
---|
121 | public void fit( DoubleVector data, int method ) { |
---|
122 | DoubleVector data2 = (DoubleVector) data.clone(); |
---|
123 | if( data2.unsorted() ) data2.sort(); |
---|
124 | |
---|
125 | int n = data2.size(); |
---|
126 | int start = 0; |
---|
127 | DoubleVector subset; |
---|
128 | DiscreteFunction d = new DiscreteFunction(); |
---|
129 | for( int i = 0; i < n-1; i++ ) { |
---|
130 | if( separable( data2, start, i, data2.get(i+1) ) && |
---|
131 | separable( data2, i+1, n-1, data2.get(i) ) ) { |
---|
132 | subset = (DoubleVector) data2.subvector( start, i ); |
---|
133 | d.plusEquals( fitForSingleCluster( subset, method ). |
---|
134 | timesEquals(i - start + 1) ); |
---|
135 | start = i + 1; |
---|
136 | } |
---|
137 | } |
---|
138 | subset = (DoubleVector) data2.subvector( start, n-1 ); |
---|
139 | d.plusEquals( fitForSingleCluster( subset, method ). |
---|
140 | timesEquals(n - start) ); |
---|
141 | d.sort(); |
---|
142 | d.normalize(); |
---|
143 | mixingDistribution = d; |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | * Fits the mixture (or mixing) distribution to the data. The data is |
---|
148 | * not pre-clustered for computational efficiency. |
---|
149 | * |
---|
150 | * @param data the data supposedly generated from the mixture |
---|
151 | * @param method the method to be used. Refer to the static final |
---|
152 | * variables of this class. |
---|
153 | * @return the generated distribution |
---|
154 | */ |
---|
155 | public DiscreteFunction fitForSingleCluster( DoubleVector data, |
---|
156 | int method ) { |
---|
157 | |
---|
158 | if( data.size() < 2 ) return new DiscreteFunction( data ); |
---|
159 | DoubleVector sp = supportPoints( data, 0 ); |
---|
160 | PaceMatrix fi = fittingIntervals( data ); |
---|
161 | PaceMatrix pm = probabilityMatrix( sp, fi ); |
---|
162 | PaceMatrix epm = new |
---|
163 | PaceMatrix( empiricalProbability( data, fi ). |
---|
164 | timesEquals( 1. / data.size() ) ); |
---|
165 | |
---|
166 | IntVector pvt = (IntVector) IntVector.seq(0, sp.size()-1); |
---|
167 | DoubleVector weights; |
---|
168 | |
---|
169 | switch( method ) { |
---|
170 | case NNMMethod: |
---|
171 | weights = pm.nnls( epm, pvt ); |
---|
172 | break; |
---|
173 | case PMMethod: |
---|
174 | weights = pm.nnlse1( epm, pvt ); |
---|
175 | break; |
---|
176 | default: |
---|
177 | throw new IllegalArgumentException("unknown method"); |
---|
178 | } |
---|
179 | |
---|
180 | DoubleVector sp2 = new DoubleVector( pvt.size() ); |
---|
181 | for( int i = 0; i < sp2.size(); i++ ){ |
---|
182 | sp2.set( i, sp.get(pvt.get(i)) ); |
---|
183 | } |
---|
184 | |
---|
185 | DiscreteFunction d = new DiscreteFunction( sp2, weights ); |
---|
186 | d.sort(); |
---|
187 | d.normalize(); |
---|
188 | return d; |
---|
189 | } |
---|
190 | |
---|
191 | /** |
---|
192 | * Return true if a value can be considered for mixture estimatino |
---|
193 | * separately from the data indexed between i0 and i1 |
---|
194 | * |
---|
195 | * @param data the data supposedly generated from the mixture |
---|
196 | * @param i0 the index of the first element in the group |
---|
197 | * @param i1 the index of the last element in the group |
---|
198 | * @param x the value |
---|
199 | * @return true if a value can be considered |
---|
200 | */ |
---|
201 | public abstract boolean separable( DoubleVector data, |
---|
202 | int i0, int i1, double x ); |
---|
203 | |
---|
204 | /** |
---|
205 | * Contructs the set of support points for mixture estimation. |
---|
206 | * |
---|
207 | * @param data the data supposedly generated from the mixture |
---|
208 | * @param ne the number of extra data that are suppposedly discarded |
---|
209 | * earlier and not passed into here |
---|
210 | * @return the set of support points |
---|
211 | */ |
---|
212 | public abstract DoubleVector supportPoints( DoubleVector data, int ne ); |
---|
213 | |
---|
214 | /** |
---|
215 | * Contructs the set of fitting intervals for mixture estimation. |
---|
216 | * |
---|
217 | * @param data the data supposedly generated from the mixture |
---|
218 | * @return the set of fitting intervals |
---|
219 | */ |
---|
220 | public abstract PaceMatrix fittingIntervals( DoubleVector data ); |
---|
221 | |
---|
222 | /** |
---|
223 | * Contructs the probability matrix for mixture estimation, given a set |
---|
224 | * of support points and a set of intervals. |
---|
225 | * |
---|
226 | * @param s the set of support points |
---|
227 | * @param intervals the intervals |
---|
228 | * @return the probability matrix |
---|
229 | */ |
---|
230 | public abstract PaceMatrix probabilityMatrix( DoubleVector s, |
---|
231 | PaceMatrix intervals ); |
---|
232 | |
---|
233 | /** |
---|
234 | * Computes the empirical probabilities of the data over a set of |
---|
235 | * intervals. |
---|
236 | * |
---|
237 | * @param data the data |
---|
238 | * @param intervals the intervals |
---|
239 | * @return the empirical probabilities |
---|
240 | */ |
---|
241 | public PaceMatrix empiricalProbability( DoubleVector data, |
---|
242 | PaceMatrix intervals ) |
---|
243 | { |
---|
244 | int n = data.size(); |
---|
245 | int k = intervals.getRowDimension(); |
---|
246 | PaceMatrix epm = new PaceMatrix( k, 1, 0 ); |
---|
247 | |
---|
248 | double point; |
---|
249 | for( int j = 0; j < n; j ++ ) { |
---|
250 | for(int i = 0; i < k; i++ ) { |
---|
251 | point = 0.0; |
---|
252 | if( intervals.get(i, 0) == data.get(j) || |
---|
253 | intervals.get(i, 1) == data.get(j) ) point = 0.5; |
---|
254 | else if( intervals.get(i, 0) < data.get(j) && |
---|
255 | intervals.get(i, 1) > data.get(j) ) point = 1.0; |
---|
256 | epm.setPlus( i, 0, point); |
---|
257 | } |
---|
258 | } |
---|
259 | return epm; |
---|
260 | } |
---|
261 | |
---|
262 | /** |
---|
263 | * Converts to a string |
---|
264 | * |
---|
265 | * @return a string representation |
---|
266 | */ |
---|
267 | public String toString() |
---|
268 | { |
---|
269 | return "The mixing distribution:\n" + mixingDistribution.toString(); |
---|
270 | } |
---|
271 | |
---|
272 | } |
---|
273 | |
---|