1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or (at |
---|
5 | * your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, but |
---|
8 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
10 | * General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
---|
15 | |
---|
16 | /* |
---|
17 | * ChisqMixture.java |
---|
18 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.functions.pace; |
---|
23 | |
---|
24 | import weka.core.RevisionUtils; |
---|
25 | import weka.core.matrix.DoubleVector; |
---|
26 | import weka.core.matrix.Maths; |
---|
27 | |
---|
28 | import java.util.Random; |
---|
29 | |
---|
30 | /** |
---|
31 | * Class for manipulating chi-square mixture distributions. <p/> |
---|
32 | * |
---|
33 | * For more information see: <p/> |
---|
34 | * |
---|
35 | <!-- technical-plaintext-start --> |
---|
36 | * Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand.<br/> |
---|
37 | * <br/> |
---|
38 | * Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002. |
---|
39 | <!-- technical-plaintext-end --> |
---|
40 | * |
---|
41 | <!-- technical-bibtex-start --> |
---|
42 | * BibTeX: |
---|
43 | * <pre> |
---|
44 | * @phdthesis{Wang2000, |
---|
45 | * address = {Hamilton, New Zealand}, |
---|
46 | * author = {Wang, Y}, |
---|
47 | * school = {Department of Computer Science, University of Waikato}, |
---|
48 | * title = {A new approach to fitting linear models in high dimensional spaces}, |
---|
49 | * year = {2000} |
---|
50 | * } |
---|
51 | * |
---|
52 | * @inproceedings{Wang2002, |
---|
53 | * address = {Sydney, Australia}, |
---|
54 | * author = {Wang, Y. and Witten, I. H.}, |
---|
55 | * booktitle = {Proceedings of the Nineteenth International Conference in Machine Learning}, |
---|
56 | * pages = {650-657}, |
---|
57 | * title = {Modeling for optimal probability prediction}, |
---|
58 | * year = {2002} |
---|
59 | * } |
---|
60 | * </pre> |
---|
61 | * <p/> |
---|
62 | <!-- technical-bibtex-end --> |
---|
63 | * |
---|
64 | * @author Yong Wang (yongwang@cs.waikato.ac.nz) |
---|
65 | * @version $Revision: 1.5 $ |
---|
66 | */ |
---|
67 | public class ChisqMixture |
---|
68 | extends MixtureDistribution { |
---|
69 | |
---|
70 | /** the separating threshold value */ |
---|
71 | protected double separatingThreshold = 0.05; |
---|
72 | |
---|
73 | /** the triming thresholding */ |
---|
74 | protected double trimingThreshold = 0.5; |
---|
75 | |
---|
76 | protected double supportThreshold = 0.5; |
---|
77 | |
---|
78 | protected int maxNumSupportPoints = 200; // for computational reason |
---|
79 | |
---|
80 | protected int fittingIntervalLength = 3; |
---|
81 | |
---|
82 | protected double fittingIntervalThreshold = 0.5; |
---|
83 | |
---|
84 | /** Contructs an empty ChisqMixture |
---|
85 | */ |
---|
86 | public ChisqMixture() {} |
---|
87 | |
---|
88 | /** |
---|
89 | * Gets the separating threshold value. This value is used by the method |
---|
90 | * separatable |
---|
91 | * |
---|
92 | * @return the separating threshold |
---|
93 | */ |
---|
94 | public double getSeparatingThreshold() { |
---|
95 | return separatingThreshold; |
---|
96 | } |
---|
97 | |
---|
98 | /** |
---|
99 | * Sets the separating threshold value |
---|
100 | * |
---|
101 | * @param t the threshold value |
---|
102 | */ |
---|
103 | public void setSeparatingThreshold( double t ) { |
---|
104 | separatingThreshold = t; |
---|
105 | } |
---|
106 | |
---|
107 | /** |
---|
108 | * Gets the triming thresholding value. This value is usef by the method trim. |
---|
109 | * |
---|
110 | * @return the triming threshold |
---|
111 | */ |
---|
112 | public double getTrimingThreshold() { |
---|
113 | return trimingThreshold; |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * Sets the triming thresholding value. |
---|
118 | * |
---|
119 | * @param t the triming threshold |
---|
120 | */ |
---|
121 | public void setTrimingThreshold( double t ){ |
---|
122 | trimingThreshold = t; |
---|
123 | } |
---|
124 | |
---|
125 | /** |
---|
126 | * Return true if a value can be considered for mixture estimation |
---|
127 | * separately from the data indexed between i0 and i1 |
---|
128 | * |
---|
129 | * @param data the data supposedly generated from the mixture |
---|
130 | * @param i0 the index of the first element in the group |
---|
131 | * @param i1 the index of the last element in the group |
---|
132 | * @param x the value |
---|
133 | * @return true if the value can be considered |
---|
134 | */ |
---|
135 | public boolean separable( DoubleVector data, int i0, int i1, double x ) { |
---|
136 | |
---|
137 | DoubleVector dataSqrt = data.sqrt(); |
---|
138 | double xh = Math.sqrt( x ); |
---|
139 | |
---|
140 | NormalMixture m = new NormalMixture(); |
---|
141 | m.setSeparatingThreshold( separatingThreshold ); |
---|
142 | return m.separable( dataSqrt, i0, i1, xh ); |
---|
143 | } |
---|
144 | |
---|
145 | /** |
---|
146 | * Contructs the set of support points for mixture estimation. |
---|
147 | * |
---|
148 | * @param data the data supposedly generated from the mixture |
---|
149 | * @param ne the number of extra data that are suppposedly discarded |
---|
150 | * earlier and not passed into here |
---|
151 | * @return the set of support points |
---|
152 | */ |
---|
153 | public DoubleVector supportPoints( DoubleVector data, int ne ) { |
---|
154 | |
---|
155 | DoubleVector sp = new DoubleVector(); |
---|
156 | sp.setCapacity( data.size() + 1 ); |
---|
157 | |
---|
158 | if( data.get(0) < supportThreshold || ne != 0 ) |
---|
159 | sp.addElement( 0 ); |
---|
160 | for( int i = 0; i < data.size(); i++ ) |
---|
161 | if( data.get( i ) > supportThreshold ) |
---|
162 | sp.addElement( data.get(i) ); |
---|
163 | |
---|
164 | // The following will be fixed later??? |
---|
165 | if( sp.size() > maxNumSupportPoints ) |
---|
166 | throw new IllegalArgumentException( "Too many support points. " ); |
---|
167 | |
---|
168 | return sp; |
---|
169 | } |
---|
170 | |
---|
171 | /** |
---|
172 | * Contructs the set of fitting intervals for mixture estimation. |
---|
173 | * |
---|
174 | * @param data the data supposedly generated from the mixture |
---|
175 | * @return the set of fitting intervals |
---|
176 | */ |
---|
177 | public PaceMatrix fittingIntervals( DoubleVector data ) { |
---|
178 | |
---|
179 | PaceMatrix a = new PaceMatrix( data.size() * 2, 2 ); |
---|
180 | DoubleVector v = data.sqrt(); |
---|
181 | int count = 0; |
---|
182 | double left, right; |
---|
183 | for( int i = 0; i < data.size(); i++ ) { |
---|
184 | left = v.get(i) - fittingIntervalLength; |
---|
185 | if( left < fittingIntervalThreshold ) left = 0; |
---|
186 | left = left * left; |
---|
187 | right = data.get(i); |
---|
188 | if( right < fittingIntervalThreshold ) |
---|
189 | right = fittingIntervalThreshold; |
---|
190 | a.set( count, 0, left ); |
---|
191 | a.set( count, 1, right ); |
---|
192 | count++; |
---|
193 | } |
---|
194 | for( int i = 0; i < data.size(); i++ ) { |
---|
195 | left = data.get(i); |
---|
196 | if( left < fittingIntervalThreshold ) left = 0; |
---|
197 | right = v.get(i) + fittingIntervalThreshold; |
---|
198 | right = right * right; |
---|
199 | a.set( count, 0, left ); |
---|
200 | a.set( count, 1, right ); |
---|
201 | count++; |
---|
202 | } |
---|
203 | a.setRowDimension( count ); |
---|
204 | |
---|
205 | return a; |
---|
206 | } |
---|
207 | |
---|
208 | /** |
---|
209 | * Contructs the probability matrix for mixture estimation, given a set |
---|
210 | * of support points and a set of intervals. |
---|
211 | * |
---|
212 | * @param s the set of support points |
---|
213 | * @param intervals the intervals |
---|
214 | * @return the probability matrix |
---|
215 | */ |
---|
216 | public PaceMatrix probabilityMatrix(DoubleVector s, PaceMatrix intervals) { |
---|
217 | |
---|
218 | int ns = s.size(); |
---|
219 | int nr = intervals.getRowDimension(); |
---|
220 | PaceMatrix p = new PaceMatrix(nr, ns); |
---|
221 | |
---|
222 | for( int i = 0; i < nr; i++ ) { |
---|
223 | for( int j = 0; j < ns; j++ ) { |
---|
224 | p.set( i, j, |
---|
225 | Maths.pchisq( intervals.get(i, 1), s.get(j) ) - |
---|
226 | Maths.pchisq( intervals.get(i, 0), s.get(j) ) ); |
---|
227 | } |
---|
228 | } |
---|
229 | |
---|
230 | return p; |
---|
231 | } |
---|
232 | |
---|
233 | |
---|
234 | /** |
---|
235 | * Returns the pace6 estimate of a single value. |
---|
236 | * |
---|
237 | * @param x the value |
---|
238 | * @return the pace6 estimate |
---|
239 | */ |
---|
240 | public double pace6 ( double x ) { |
---|
241 | |
---|
242 | if( x > 100 ) return x; // pratical consideration. will modify later |
---|
243 | DoubleVector points = mixingDistribution.getPointValues(); |
---|
244 | DoubleVector values = mixingDistribution.getFunctionValues(); |
---|
245 | DoubleVector mean = points.sqrt(); |
---|
246 | |
---|
247 | DoubleVector d = Maths.dchisqLog( x, points ); |
---|
248 | d.minusEquals( d.max() ); |
---|
249 | d = d.map("java.lang.Math", "exp").timesEquals( values ); |
---|
250 | double atilde = mean.innerProduct( d ) / d.sum(); |
---|
251 | return atilde * atilde; |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * Returns the pace6 estimate of a vector. |
---|
256 | * |
---|
257 | * @param x the vector |
---|
258 | * @return the pace6 estimate |
---|
259 | */ |
---|
260 | public DoubleVector pace6( DoubleVector x ) { |
---|
261 | |
---|
262 | DoubleVector pred = new DoubleVector( x.size() ); |
---|
263 | for(int i = 0; i < x.size(); i++ ) |
---|
264 | pred.set(i, pace6(x.get(i)) ); |
---|
265 | trim( pred ); |
---|
266 | return pred; |
---|
267 | } |
---|
268 | |
---|
269 | /** |
---|
270 | * Returns the pace2 estimate of a vector. |
---|
271 | * |
---|
272 | * @param x the vector |
---|
273 | * @return the pace2 estimate |
---|
274 | */ |
---|
275 | public DoubleVector pace2( DoubleVector x ) { |
---|
276 | |
---|
277 | DoubleVector chf = new DoubleVector( x.size() ); |
---|
278 | for(int i = 0; i < x.size(); i++ ) chf.set( i, hf( x.get(i) ) ); |
---|
279 | |
---|
280 | chf.cumulateInPlace(); |
---|
281 | |
---|
282 | int index = chf.indexOfMax(); |
---|
283 | |
---|
284 | DoubleVector copy = x.copy(); |
---|
285 | if( index < x.size()-1 ) copy.set( index + 1, x.size()-1, 0 ); |
---|
286 | trim( copy ); |
---|
287 | return copy; |
---|
288 | } |
---|
289 | |
---|
290 | /** |
---|
291 | * Returns the pace4 estimate of a vector. |
---|
292 | * |
---|
293 | * @param x the vector |
---|
294 | * @return the pace4 estimate |
---|
295 | */ |
---|
296 | public DoubleVector pace4( DoubleVector x ) { |
---|
297 | |
---|
298 | DoubleVector h = h( x ); |
---|
299 | DoubleVector copy = x.copy(); |
---|
300 | for( int i = 0; i < x.size(); i++ ) |
---|
301 | if( h.get(i) <= 0 ) copy.set(i, 0); |
---|
302 | trim( copy ); |
---|
303 | return copy; |
---|
304 | } |
---|
305 | |
---|
306 | /** |
---|
307 | * Trims the small values of the estaimte |
---|
308 | * |
---|
309 | * @param x the estimate vector |
---|
310 | */ |
---|
311 | public void trim( DoubleVector x ) { |
---|
312 | |
---|
313 | for(int i = 0; i < x.size(); i++ ) { |
---|
314 | if( x.get(i) <= trimingThreshold ) x.set(i, 0); |
---|
315 | } |
---|
316 | } |
---|
317 | |
---|
318 | /** |
---|
319 | * Computes the value of h(x) / f(x) given the mixture. The |
---|
320 | * implementation avoided overflow. |
---|
321 | * |
---|
322 | * @param AHat the value |
---|
323 | * @return the value of h(x) / f(x) |
---|
324 | */ |
---|
325 | public double hf( double AHat ) { |
---|
326 | |
---|
327 | DoubleVector points = mixingDistribution.getPointValues(); |
---|
328 | DoubleVector values = mixingDistribution.getFunctionValues(); |
---|
329 | |
---|
330 | double x = Math.sqrt( AHat ); |
---|
331 | DoubleVector mean = points.sqrt(); |
---|
332 | DoubleVector d1 = Maths.dnormLog( x, mean, 1 ); |
---|
333 | double d1max = d1.max(); |
---|
334 | d1.minusEquals( d1max ); |
---|
335 | DoubleVector d2 = Maths.dnormLog( -x, mean, 1 ); |
---|
336 | d2.minusEquals( d1max ); |
---|
337 | |
---|
338 | d1 = d1.map("java.lang.Math", "exp"); |
---|
339 | d1.timesEquals( values ); |
---|
340 | d2 = d2.map("java.lang.Math", "exp"); |
---|
341 | d2.timesEquals( values ); |
---|
342 | |
---|
343 | return ( ( points.minus(x/2)).innerProduct( d1 ) - |
---|
344 | ( points.plus(x/2)).innerProduct( d2 ) ) |
---|
345 | / (d1.sum() + d2.sum()); |
---|
346 | } |
---|
347 | |
---|
348 | /** |
---|
349 | * Computes the value of h(x) given the mixture. |
---|
350 | * |
---|
351 | * @param AHat the value |
---|
352 | * @return the value of h(x) |
---|
353 | */ |
---|
354 | public double h( double AHat ) { |
---|
355 | |
---|
356 | if( AHat == 0.0 ) return 0.0; |
---|
357 | DoubleVector points = mixingDistribution.getPointValues(); |
---|
358 | DoubleVector values = mixingDistribution.getFunctionValues(); |
---|
359 | |
---|
360 | double aHat = Math.sqrt( AHat ); |
---|
361 | DoubleVector aStar = points.sqrt(); |
---|
362 | DoubleVector d1 = Maths.dnorm( aHat, aStar, 1 ).timesEquals( values ); |
---|
363 | DoubleVector d2 = Maths.dnorm( -aHat, aStar, 1 ).timesEquals( values ); |
---|
364 | |
---|
365 | return points.minus(aHat/2).innerProduct( d1 ) - |
---|
366 | points.plus(aHat/2).innerProduct( d2 ); |
---|
367 | } |
---|
368 | |
---|
369 | /** |
---|
370 | * Computes the value of h(x) given the mixture, where x is a vector. |
---|
371 | * |
---|
372 | * @param AHat the vector |
---|
373 | * @return the value of h(x) |
---|
374 | */ |
---|
375 | public DoubleVector h( DoubleVector AHat ) { |
---|
376 | |
---|
377 | DoubleVector h = new DoubleVector( AHat.size() ); |
---|
378 | for( int i = 0; i < AHat.size(); i++ ) |
---|
379 | h.set( i, h( AHat.get(i) ) ); |
---|
380 | return h; |
---|
381 | } |
---|
382 | |
---|
383 | /** |
---|
384 | * Computes the value of f(x) given the mixture. |
---|
385 | * |
---|
386 | * @param x the value |
---|
387 | * @return the value of f(x) |
---|
388 | */ |
---|
389 | public double f( double x ) { |
---|
390 | |
---|
391 | DoubleVector points = mixingDistribution.getPointValues(); |
---|
392 | DoubleVector values = mixingDistribution.getFunctionValues(); |
---|
393 | |
---|
394 | return Maths.dchisq(x, points).timesEquals(values).sum(); |
---|
395 | } |
---|
396 | |
---|
397 | /** |
---|
398 | * Computes the value of f(x) given the mixture, where x is a vector. |
---|
399 | * |
---|
400 | * @param x the vector |
---|
401 | * @return the value of f(x) |
---|
402 | */ |
---|
403 | public DoubleVector f( DoubleVector x ) { |
---|
404 | |
---|
405 | DoubleVector f = new DoubleVector( x.size() ); |
---|
406 | for( int i = 0; i < x.size(); i++ ) |
---|
407 | f.set( i, h( f.get(i) ) ); |
---|
408 | return f; |
---|
409 | } |
---|
410 | |
---|
411 | /** |
---|
412 | * Converts to a string |
---|
413 | * |
---|
414 | * @return a string representation |
---|
415 | */ |
---|
416 | public String toString() { |
---|
417 | return mixingDistribution.toString(); |
---|
418 | } |
---|
419 | |
---|
420 | /** |
---|
421 | * Returns the revision string. |
---|
422 | * |
---|
423 | * @return the revision |
---|
424 | */ |
---|
425 | public String getRevision() { |
---|
426 | return RevisionUtils.extract("$Revision: 1.5 $"); |
---|
427 | } |
---|
428 | |
---|
429 | /** |
---|
430 | * Method to test this class |
---|
431 | * |
---|
432 | * @param args the commandline arguments |
---|
433 | */ |
---|
434 | public static void main(String args[]) { |
---|
435 | |
---|
436 | int n1 = 50; |
---|
437 | int n2 = 50; |
---|
438 | double ncp1 = 0; |
---|
439 | double ncp2 = 10; |
---|
440 | double mu1 = Math.sqrt( ncp1 ); |
---|
441 | double mu2 = Math.sqrt( ncp2 ); |
---|
442 | DoubleVector a = Maths.rnorm( n1, mu1, 1, new Random() ); |
---|
443 | a = a.cat( Maths.rnorm(n2, mu2, 1, new Random()) ); |
---|
444 | DoubleVector aNormal = a; |
---|
445 | a = a.square(); |
---|
446 | a.sort(); |
---|
447 | |
---|
448 | DoubleVector means = (new DoubleVector( n1, mu1 )).cat(new DoubleVector(n2, mu2)); |
---|
449 | |
---|
450 | System.out.println("=========================================================="); |
---|
451 | System.out.println("This is to test the estimation of the mixing\n" + |
---|
452 | "distribution of the mixture of non-central Chi-square\n" + |
---|
453 | "distributions. The example mixture used is of the form: \n\n" + |
---|
454 | " 0.5 * Chi^2_1(ncp1) + 0.5 * Chi^2_1(ncp2)\n" ); |
---|
455 | |
---|
456 | System.out.println("It also tests the PACE estimators. Quadratic losses of the\n" + |
---|
457 | "estimators are given, measuring their performance."); |
---|
458 | System.out.println("=========================================================="); |
---|
459 | System.out.println( "ncp1 = " + ncp1 + " ncp2 = " + ncp2 +"\n" ); |
---|
460 | |
---|
461 | System.out.println( a.size() + " observations are: \n\n" + a ); |
---|
462 | |
---|
463 | System.out.println( "\nQuadratic loss of the raw data (i.e., the MLE) = " + |
---|
464 | aNormal.sum2( means ) ); |
---|
465 | System.out.println("=========================================================="); |
---|
466 | |
---|
467 | // find the mixing distribution |
---|
468 | ChisqMixture d = new ChisqMixture(); |
---|
469 | d.fit( a, NNMMethod ); |
---|
470 | System.out.println( "The estimated mixing distribution is\n" + d ); |
---|
471 | |
---|
472 | DoubleVector pred = d.pace2( a.rev() ).rev(); |
---|
473 | System.out.println( "\nThe PACE2 Estimate = \n" + pred ); |
---|
474 | System.out.println( "Quadratic loss = " + |
---|
475 | pred.sqrt().times(aNormal.sign()).sum2( means ) ); |
---|
476 | |
---|
477 | pred = d.pace4( a ); |
---|
478 | System.out.println( "\nThe PACE4 Estimate = \n" + pred ); |
---|
479 | System.out.println( "Quadratic loss = " + |
---|
480 | pred.sqrt().times(aNormal.sign()).sum2( means ) ); |
---|
481 | |
---|
482 | pred = d.pace6( a ); |
---|
483 | System.out.println( "\nThe PACE6 Estimate = \n" + pred ); |
---|
484 | System.out.println( "Quadratic loss = " + |
---|
485 | pred.sqrt().times(aNormal.sign()).sum2( means ) ); |
---|
486 | } |
---|
487 | } |
---|