| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * NeuralConnection.java |
|---|
| 19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | */ |
|---|
| 21 | |
|---|
| 22 | package weka.classifiers.functions.neural; |
|---|
| 23 | |
|---|
| 24 | import weka.core.RevisionHandler; |
|---|
| 25 | |
|---|
| 26 | import java.awt.Color; |
|---|
| 27 | import java.awt.Graphics; |
|---|
| 28 | import java.io.Serializable; |
|---|
| 29 | |
|---|
| 30 | /** |
|---|
| 31 | * Abstract unit in a NeuralNetwork. |
|---|
| 32 | * |
|---|
| 33 | * @author Malcolm Ware (mfw4@cs.waikato.ac.nz) |
|---|
| 34 | * @version $Revision: 5402 $ |
|---|
| 35 | */ |
|---|
| 36 | public abstract class NeuralConnection |
|---|
| 37 | implements Serializable, RevisionHandler { |
|---|
| 38 | |
|---|
| 39 | /** for serialization */ |
|---|
| 40 | private static final long serialVersionUID = -286208828571059163L; |
|---|
| 41 | |
|---|
| 42 | //bitwise flags for the types of unit. |
|---|
| 43 | |
|---|
| 44 | /** This unit is not connected to any others. */ |
|---|
| 45 | public static final int UNCONNECTED = 0; |
|---|
| 46 | |
|---|
| 47 | /** This unit is a pure input unit. */ |
|---|
| 48 | public static final int PURE_INPUT = 1; |
|---|
| 49 | |
|---|
| 50 | /** This unit is a pure output unit. */ |
|---|
| 51 | public static final int PURE_OUTPUT = 2; |
|---|
| 52 | |
|---|
| 53 | /** This unit is an input unit. */ |
|---|
| 54 | public static final int INPUT = 4; |
|---|
| 55 | |
|---|
| 56 | /** This unit is an output unit. */ |
|---|
| 57 | public static final int OUTPUT = 8; |
|---|
| 58 | |
|---|
| 59 | /** This flag is set once the unit has a connection. */ |
|---|
| 60 | public static final int CONNECTED = 16; |
|---|
| 61 | |
|---|
| 62 | |
|---|
| 63 | |
|---|
| 64 | /////The difference between pure and not is that pure is used to feed |
|---|
| 65 | /////the neural network the attribute values and the errors on the outputs |
|---|
| 66 | /////Beyond that they do no calculations, and have certain restrictions |
|---|
| 67 | /////on the connections they can make. |
|---|
| 68 | |
|---|
| 69 | |
|---|
| 70 | |
|---|
| 71 | /** The list of inputs to this unit. */ |
|---|
| 72 | protected NeuralConnection[] m_inputList; |
|---|
| 73 | |
|---|
| 74 | /** The list of outputs from this unit. */ |
|---|
| 75 | protected NeuralConnection[] m_outputList; |
|---|
| 76 | |
|---|
| 77 | /** The numbering for the connections at the other end of the input lines. */ |
|---|
| 78 | protected int[] m_inputNums; |
|---|
| 79 | |
|---|
| 80 | /** The numbering for the connections at the other end of the out lines. */ |
|---|
| 81 | protected int[] m_outputNums; |
|---|
| 82 | |
|---|
| 83 | /** The number of inputs. */ |
|---|
| 84 | protected int m_numInputs; |
|---|
| 85 | |
|---|
| 86 | /** The number of outputs. */ |
|---|
| 87 | protected int m_numOutputs; |
|---|
| 88 | |
|---|
| 89 | /** The output value for this unit, NaN if not calculated. */ |
|---|
| 90 | protected double m_unitValue; |
|---|
| 91 | |
|---|
| 92 | /** The error value for this unit, NaN if not calculated. */ |
|---|
| 93 | protected double m_unitError; |
|---|
| 94 | |
|---|
| 95 | /** True if the weights have already been updated. */ |
|---|
| 96 | protected boolean m_weightsUpdated; |
|---|
| 97 | |
|---|
| 98 | /** The string that uniquely (provided naming is done properly) identifies |
|---|
| 99 | * this unit. */ |
|---|
| 100 | protected String m_id; |
|---|
| 101 | |
|---|
| 102 | /** The type of unit this is. */ |
|---|
| 103 | protected int m_type; |
|---|
| 104 | |
|---|
| 105 | /** The x coord of this unit purely for displaying purposes. */ |
|---|
| 106 | protected double m_x; |
|---|
| 107 | |
|---|
| 108 | /** The y coord of this unit purely for displaying purposes. */ |
|---|
| 109 | protected double m_y; |
|---|
| 110 | |
|---|
| 111 | |
|---|
| 112 | |
|---|
| 113 | |
|---|
| 114 | /** |
|---|
| 115 | * Constructs The unit with the basic connection information prepared for |
|---|
| 116 | * use. |
|---|
| 117 | * |
|---|
| 118 | * @param id the unique id of the unit |
|---|
| 119 | */ |
|---|
| 120 | public NeuralConnection(String id) { |
|---|
| 121 | |
|---|
| 122 | m_id = id; |
|---|
| 123 | m_inputList = new NeuralConnection[0]; |
|---|
| 124 | m_outputList = new NeuralConnection[0]; |
|---|
| 125 | m_inputNums = new int[0]; |
|---|
| 126 | m_outputNums = new int[0]; |
|---|
| 127 | |
|---|
| 128 | m_numInputs = 0; |
|---|
| 129 | m_numOutputs = 0; |
|---|
| 130 | |
|---|
| 131 | m_unitValue = Double.NaN; |
|---|
| 132 | m_unitError = Double.NaN; |
|---|
| 133 | |
|---|
| 134 | m_weightsUpdated = false; |
|---|
| 135 | m_x = 0; |
|---|
| 136 | m_y = 0; |
|---|
| 137 | m_type = UNCONNECTED; |
|---|
| 138 | } |
|---|
| 139 | |
|---|
| 140 | |
|---|
| 141 | /** |
|---|
| 142 | * @return The identity string of this unit. |
|---|
| 143 | */ |
|---|
| 144 | public String getId() { |
|---|
| 145 | return m_id; |
|---|
| 146 | } |
|---|
| 147 | |
|---|
| 148 | /** |
|---|
| 149 | * @return The type of this unit. |
|---|
| 150 | */ |
|---|
| 151 | public int getType() { |
|---|
| 152 | return m_type; |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | /** |
|---|
| 156 | * @param t The new type of this unit. |
|---|
| 157 | */ |
|---|
| 158 | public void setType(int t) { |
|---|
| 159 | m_type = t; |
|---|
| 160 | } |
|---|
| 161 | |
|---|
| 162 | /** |
|---|
| 163 | * Call this to reset the unit for another run. |
|---|
| 164 | * It is expected by that this unit will call the reset functions of all |
|---|
| 165 | * input units to it. It is also expected that this will not be done |
|---|
| 166 | * if the unit has already been reset (or atleast appears to be). |
|---|
| 167 | */ |
|---|
| 168 | public abstract void reset(); |
|---|
| 169 | |
|---|
| 170 | /** |
|---|
| 171 | * Call this to get the output value of this unit. |
|---|
| 172 | * @param calculate True if the value should be calculated if it hasn't been |
|---|
| 173 | * already. |
|---|
| 174 | * @return The output value, or NaN, if the value has not been calculated. |
|---|
| 175 | */ |
|---|
| 176 | public abstract double outputValue(boolean calculate); |
|---|
| 177 | |
|---|
| 178 | /** |
|---|
| 179 | * Call this to get the error value of this unit. |
|---|
| 180 | * @param calculate True if the value should be calculated if it hasn't been |
|---|
| 181 | * already. |
|---|
| 182 | * @return The error value, or NaN, if the value has not been calculated. |
|---|
| 183 | */ |
|---|
| 184 | public abstract double errorValue(boolean calculate); |
|---|
| 185 | |
|---|
| 186 | /** |
|---|
| 187 | * Call this to have the connection save the current |
|---|
| 188 | * weights. |
|---|
| 189 | */ |
|---|
| 190 | public abstract void saveWeights(); |
|---|
| 191 | |
|---|
| 192 | /** |
|---|
| 193 | * Call this to have the connection restore from the saved |
|---|
| 194 | * weights. |
|---|
| 195 | */ |
|---|
| 196 | public abstract void restoreWeights(); |
|---|
| 197 | |
|---|
| 198 | /** |
|---|
| 199 | * Call this to get the weight value on a particular connection. |
|---|
| 200 | * @param n The connection number to get the weight for, -1 if The threshold |
|---|
| 201 | * weight should be returned. |
|---|
| 202 | * @return This function will default to return 1. If overridden, it should |
|---|
| 203 | * return the value for the specified connection or if -1 then it should |
|---|
| 204 | * return the threshold value. If no value exists for the specified |
|---|
| 205 | * connection, NaN will be returned. |
|---|
| 206 | */ |
|---|
| 207 | public double weightValue(int n) { |
|---|
| 208 | return 1; |
|---|
| 209 | } |
|---|
| 210 | |
|---|
| 211 | /** |
|---|
| 212 | * Call this function to update the weight values at this unit. |
|---|
| 213 | * After the weights have been updated at this unit, All the |
|---|
| 214 | * input connections will then be called from this to have their |
|---|
| 215 | * weights updated. |
|---|
| 216 | * @param l The learning Rate to use. |
|---|
| 217 | * @param m The momentum to use. |
|---|
| 218 | */ |
|---|
| 219 | public void updateWeights(double l, double m) { |
|---|
| 220 | |
|---|
| 221 | //the action the subclasses should perform is upto them |
|---|
| 222 | //but if they coverride they should make a call to this to |
|---|
| 223 | //call the method for all their inputs. |
|---|
| 224 | |
|---|
| 225 | if (!m_weightsUpdated) { |
|---|
| 226 | for (int noa = 0; noa < m_numInputs; noa++) { |
|---|
| 227 | m_inputList[noa].updateWeights(l, m); |
|---|
| 228 | } |
|---|
| 229 | m_weightsUpdated = true; |
|---|
| 230 | } |
|---|
| 231 | |
|---|
| 232 | } |
|---|
| 233 | |
|---|
| 234 | /** |
|---|
| 235 | * Use this to get easy access to the inputs. |
|---|
| 236 | * It is not advised to change the entries in this list |
|---|
| 237 | * (use the connecting and disconnecting functions to do that) |
|---|
| 238 | * @return The inputs list. |
|---|
| 239 | */ |
|---|
| 240 | public NeuralConnection[] getInputs() { |
|---|
| 241 | return m_inputList; |
|---|
| 242 | } |
|---|
| 243 | |
|---|
| 244 | /** |
|---|
| 245 | * Use this to get easy access to the outputs. |
|---|
| 246 | * It is not advised to change the entries in this list |
|---|
| 247 | * (use the connecting and disconnecting functions to do that) |
|---|
| 248 | * @return The outputs list. |
|---|
| 249 | */ |
|---|
| 250 | public NeuralConnection[] getOutputs() { |
|---|
| 251 | return m_outputList; |
|---|
| 252 | } |
|---|
| 253 | |
|---|
| 254 | /** |
|---|
| 255 | * Use this to get easy access to the input numbers. |
|---|
| 256 | * It is not advised to change the entries in this list |
|---|
| 257 | * (use the connecting and disconnecting functions to do that) |
|---|
| 258 | * @return The input nums list. |
|---|
| 259 | */ |
|---|
| 260 | public int[] getInputNums() { |
|---|
| 261 | return m_inputNums; |
|---|
| 262 | } |
|---|
| 263 | |
|---|
| 264 | /** |
|---|
| 265 | * Use this to get easy access to the output numbers. |
|---|
| 266 | * It is not advised to change the entries in this list |
|---|
| 267 | * (use the connecting and disconnecting functions to do that) |
|---|
| 268 | * @return The outputs list. |
|---|
| 269 | */ |
|---|
| 270 | public int[] getOutputNums() { |
|---|
| 271 | return m_outputNums; |
|---|
| 272 | } |
|---|
| 273 | |
|---|
| 274 | /** |
|---|
| 275 | * @return the x coord. |
|---|
| 276 | */ |
|---|
| 277 | public double getX() { |
|---|
| 278 | return m_x; |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | /** |
|---|
| 282 | * @return the y coord. |
|---|
| 283 | */ |
|---|
| 284 | public double getY() { |
|---|
| 285 | return m_y; |
|---|
| 286 | } |
|---|
| 287 | |
|---|
| 288 | /** |
|---|
| 289 | * @param x The new value for it's x pos. |
|---|
| 290 | */ |
|---|
| 291 | public void setX(double x) { |
|---|
| 292 | m_x = x; |
|---|
| 293 | } |
|---|
| 294 | |
|---|
| 295 | /** |
|---|
| 296 | * @param y The new value for it's y pos. |
|---|
| 297 | */ |
|---|
| 298 | public void setY(double y) { |
|---|
| 299 | m_y = y; |
|---|
| 300 | } |
|---|
| 301 | |
|---|
| 302 | |
|---|
| 303 | /** |
|---|
| 304 | * Call this function to determine if the point at x,y is on the unit. |
|---|
| 305 | * @param g The graphics context for font size info. |
|---|
| 306 | * @param x The x coord. |
|---|
| 307 | * @param y The y coord. |
|---|
| 308 | * @param w The width of the display. |
|---|
| 309 | * @param h The height of the display. |
|---|
| 310 | * @return True if the point is on the unit, false otherwise. |
|---|
| 311 | */ |
|---|
| 312 | public boolean onUnit(Graphics g, int x, int y, int w, int h) { |
|---|
| 313 | |
|---|
| 314 | int m = (int)(m_x * w); |
|---|
| 315 | int c = (int)(m_y * h); |
|---|
| 316 | if (x > m + 10 || x < m - 10 || y > c + 10 || y < c - 10) { |
|---|
| 317 | return false; |
|---|
| 318 | } |
|---|
| 319 | return true; |
|---|
| 320 | |
|---|
| 321 | } |
|---|
| 322 | |
|---|
| 323 | /** |
|---|
| 324 | * Call this function to draw the node. |
|---|
| 325 | * @param g The graphics context. |
|---|
| 326 | * @param w The width of the drawing area. |
|---|
| 327 | * @param h The height of the drawing area. |
|---|
| 328 | */ |
|---|
| 329 | public void drawNode(Graphics g, int w, int h) { |
|---|
| 330 | |
|---|
| 331 | if ((m_type & OUTPUT) == OUTPUT) { |
|---|
| 332 | g.setColor(Color.orange); |
|---|
| 333 | } |
|---|
| 334 | else { |
|---|
| 335 | g.setColor(Color.red); |
|---|
| 336 | } |
|---|
| 337 | g.fillOval((int)(m_x * w) - 9, (int)(m_y * h) - 9, 19, 19); |
|---|
| 338 | g.setColor(Color.gray); |
|---|
| 339 | g.fillOval((int)(m_x * w) - 5, (int)(m_y * h) - 5, 11, 11); |
|---|
| 340 | } |
|---|
| 341 | |
|---|
| 342 | /** |
|---|
| 343 | * Call this function to draw the node highlighted. |
|---|
| 344 | * @param g The graphics context. |
|---|
| 345 | * @param w The width of the drawing area. |
|---|
| 346 | * @param h The height of the drawing area. |
|---|
| 347 | */ |
|---|
| 348 | public void drawHighlight(Graphics g, int w, int h) { |
|---|
| 349 | |
|---|
| 350 | drawNode(g, w, h); |
|---|
| 351 | g.setColor(Color.yellow); |
|---|
| 352 | g.fillOval((int)(m_x * w) - 5, (int)(m_y * h) - 5, 11, 11); |
|---|
| 353 | } |
|---|
| 354 | |
|---|
| 355 | /** |
|---|
| 356 | * Call this function to draw the nodes input connections. |
|---|
| 357 | * @param g The graphics context. |
|---|
| 358 | * @param w The width of the drawing area. |
|---|
| 359 | * @param h The height of the drawing area. |
|---|
| 360 | */ |
|---|
| 361 | public void drawInputLines(Graphics g, int w, int h) { |
|---|
| 362 | |
|---|
| 363 | g.setColor(Color.black); |
|---|
| 364 | |
|---|
| 365 | int px = (int)(m_x * w); |
|---|
| 366 | int py = (int)(m_y * h); |
|---|
| 367 | for (int noa = 0; noa < m_numInputs; noa++) { |
|---|
| 368 | g.drawLine((int)(m_inputList[noa].getX() * w) |
|---|
| 369 | , (int)(m_inputList[noa].getY() * h) |
|---|
| 370 | , px, py); |
|---|
| 371 | } |
|---|
| 372 | } |
|---|
| 373 | |
|---|
| 374 | /** |
|---|
| 375 | * Call this function to draw the nodes output connections. |
|---|
| 376 | * @param g The graphics context. |
|---|
| 377 | * @param w The width of the drawing area. |
|---|
| 378 | * @param h The height of the drawing area. |
|---|
| 379 | */ |
|---|
| 380 | public void drawOutputLines(Graphics g, int w, int h) { |
|---|
| 381 | |
|---|
| 382 | g.setColor(Color.black); |
|---|
| 383 | |
|---|
| 384 | int px = (int)(m_x * w); |
|---|
| 385 | int py = (int)(m_y * h); |
|---|
| 386 | for (int noa = 0; noa < m_numOutputs; noa++) { |
|---|
| 387 | g.drawLine(px, py |
|---|
| 388 | , (int)(m_outputList[noa].getX() * w) |
|---|
| 389 | , (int)(m_outputList[noa].getY() * h)); |
|---|
| 390 | } |
|---|
| 391 | } |
|---|
| 392 | |
|---|
| 393 | |
|---|
| 394 | /** |
|---|
| 395 | * This will connect the specified unit to be an input to this unit. |
|---|
| 396 | * @param i The unit. |
|---|
| 397 | * @param n It's connection number for this connection. |
|---|
| 398 | * @return True if the connection was made, false otherwise. |
|---|
| 399 | */ |
|---|
| 400 | protected boolean connectInput(NeuralConnection i, int n) { |
|---|
| 401 | |
|---|
| 402 | for (int noa = 0; noa < m_numInputs; noa++) { |
|---|
| 403 | if (i == m_inputList[noa]) { |
|---|
| 404 | return false; |
|---|
| 405 | } |
|---|
| 406 | } |
|---|
| 407 | if (m_numInputs >= m_inputList.length) { |
|---|
| 408 | //then allocate more space to it. |
|---|
| 409 | allocateInputs(); |
|---|
| 410 | } |
|---|
| 411 | m_inputList[m_numInputs] = i; |
|---|
| 412 | m_inputNums[m_numInputs] = n; |
|---|
| 413 | m_numInputs++; |
|---|
| 414 | return true; |
|---|
| 415 | } |
|---|
| 416 | |
|---|
| 417 | /** |
|---|
| 418 | * This will allocate more space for input connection information |
|---|
| 419 | * if the arrays for this have been filled up. |
|---|
| 420 | */ |
|---|
| 421 | protected void allocateInputs() { |
|---|
| 422 | |
|---|
| 423 | NeuralConnection[] temp1 = new NeuralConnection[m_inputList.length + 15]; |
|---|
| 424 | int[] temp2 = new int[m_inputNums.length + 15]; |
|---|
| 425 | |
|---|
| 426 | for (int noa = 0; noa < m_numInputs; noa++) { |
|---|
| 427 | temp1[noa] = m_inputList[noa]; |
|---|
| 428 | temp2[noa] = m_inputNums[noa]; |
|---|
| 429 | } |
|---|
| 430 | m_inputList = temp1; |
|---|
| 431 | m_inputNums = temp2; |
|---|
| 432 | } |
|---|
| 433 | |
|---|
| 434 | /** |
|---|
| 435 | * This will connect the specified unit to be an output to this unit. |
|---|
| 436 | * @param o The unit. |
|---|
| 437 | * @param n It's connection number for this connection. |
|---|
| 438 | * @return True if the connection was made, false otherwise. |
|---|
| 439 | */ |
|---|
| 440 | protected boolean connectOutput(NeuralConnection o, int n) { |
|---|
| 441 | |
|---|
| 442 | for (int noa = 0; noa < m_numOutputs; noa++) { |
|---|
| 443 | if (o == m_outputList[noa]) { |
|---|
| 444 | return false; |
|---|
| 445 | } |
|---|
| 446 | } |
|---|
| 447 | if (m_numOutputs >= m_outputList.length) { |
|---|
| 448 | //then allocate more space to it. |
|---|
| 449 | allocateOutputs(); |
|---|
| 450 | } |
|---|
| 451 | m_outputList[m_numOutputs] = o; |
|---|
| 452 | m_outputNums[m_numOutputs] = n; |
|---|
| 453 | m_numOutputs++; |
|---|
| 454 | return true; |
|---|
| 455 | } |
|---|
| 456 | |
|---|
| 457 | /** |
|---|
| 458 | * Allocates more space for output connection information |
|---|
| 459 | * if the arrays have been filled up. |
|---|
| 460 | */ |
|---|
| 461 | protected void allocateOutputs() { |
|---|
| 462 | |
|---|
| 463 | NeuralConnection[] temp1 |
|---|
| 464 | = new NeuralConnection[m_outputList.length + 15]; |
|---|
| 465 | |
|---|
| 466 | int[] temp2 = new int[m_outputNums.length + 15]; |
|---|
| 467 | |
|---|
| 468 | for (int noa = 0; noa < m_numOutputs; noa++) { |
|---|
| 469 | temp1[noa] = m_outputList[noa]; |
|---|
| 470 | temp2[noa] = m_outputNums[noa]; |
|---|
| 471 | } |
|---|
| 472 | m_outputList = temp1; |
|---|
| 473 | m_outputNums = temp2; |
|---|
| 474 | } |
|---|
| 475 | |
|---|
| 476 | /** |
|---|
| 477 | * This will disconnect the input with the specific connection number |
|---|
| 478 | * From this node (only on this end however). |
|---|
| 479 | * @param i The unit to disconnect. |
|---|
| 480 | * @param n The connection number at the other end, -1 if all the connections |
|---|
| 481 | * to this unit should be severed. |
|---|
| 482 | * @return True if the connection was removed, false if the connection was |
|---|
| 483 | * not found. |
|---|
| 484 | */ |
|---|
| 485 | protected boolean disconnectInput(NeuralConnection i, int n) { |
|---|
| 486 | |
|---|
| 487 | int loc = -1; |
|---|
| 488 | boolean removed = false; |
|---|
| 489 | do { |
|---|
| 490 | loc = -1; |
|---|
| 491 | for (int noa = 0; noa < m_numInputs; noa++) { |
|---|
| 492 | if (i == m_inputList[noa] && (n == -1 || n == m_inputNums[noa])) { |
|---|
| 493 | loc = noa; |
|---|
| 494 | break; |
|---|
| 495 | } |
|---|
| 496 | } |
|---|
| 497 | |
|---|
| 498 | if (loc >= 0) { |
|---|
| 499 | for (int noa = loc+1; noa < m_numInputs; noa++) { |
|---|
| 500 | m_inputList[noa-1] = m_inputList[noa]; |
|---|
| 501 | m_inputNums[noa-1] = m_inputNums[noa]; |
|---|
| 502 | //set the other end to have the right connection number. |
|---|
| 503 | m_inputList[noa-1].changeOutputNum(m_inputNums[noa-1], noa-1); |
|---|
| 504 | } |
|---|
| 505 | m_numInputs--; |
|---|
| 506 | removed = true; |
|---|
| 507 | } |
|---|
| 508 | } while (n == -1 && loc != -1); |
|---|
| 509 | |
|---|
| 510 | return removed; |
|---|
| 511 | } |
|---|
| 512 | |
|---|
| 513 | /** |
|---|
| 514 | * This function will remove all the inputs to this unit. |
|---|
| 515 | * In doing so it will also terminate the connections at the other end. |
|---|
| 516 | */ |
|---|
| 517 | public void removeAllInputs() { |
|---|
| 518 | |
|---|
| 519 | for (int noa = 0; noa < m_numInputs; noa++) { |
|---|
| 520 | //this command will simply remove any connections this node has |
|---|
| 521 | //with the other in 1 go, rather than seperately. |
|---|
| 522 | m_inputList[noa].disconnectOutput(this, -1); |
|---|
| 523 | } |
|---|
| 524 | |
|---|
| 525 | //now reset the inputs. |
|---|
| 526 | m_inputList = new NeuralConnection[0]; |
|---|
| 527 | setType(getType() & (~INPUT)); |
|---|
| 528 | if (getNumOutputs() == 0) { |
|---|
| 529 | setType(getType() & (~CONNECTED)); |
|---|
| 530 | } |
|---|
| 531 | m_inputNums = new int[0]; |
|---|
| 532 | m_numInputs = 0; |
|---|
| 533 | |
|---|
| 534 | } |
|---|
| 535 | |
|---|
| 536 | |
|---|
| 537 | |
|---|
| 538 | /** |
|---|
| 539 | * Changes the connection value information for one of the connections. |
|---|
| 540 | * @param n The connection number to change. |
|---|
| 541 | * @param v The value to change it to. |
|---|
| 542 | */ |
|---|
| 543 | protected void changeInputNum(int n, int v) { |
|---|
| 544 | |
|---|
| 545 | if (n >= m_numInputs || n < 0) { |
|---|
| 546 | return; |
|---|
| 547 | } |
|---|
| 548 | |
|---|
| 549 | m_inputNums[n] = v; |
|---|
| 550 | } |
|---|
| 551 | |
|---|
| 552 | /** |
|---|
| 553 | * This will disconnect the output with the specific connection number |
|---|
| 554 | * From this node (only on this end however). |
|---|
| 555 | * @param o The unit to disconnect. |
|---|
| 556 | * @param n The connection number at the other end, -1 if all the connections |
|---|
| 557 | * to this unit should be severed. |
|---|
| 558 | * @return True if the connection was removed, false if the connection was |
|---|
| 559 | * not found. |
|---|
| 560 | */ |
|---|
| 561 | protected boolean disconnectOutput(NeuralConnection o, int n) { |
|---|
| 562 | |
|---|
| 563 | int loc = -1; |
|---|
| 564 | boolean removed = false; |
|---|
| 565 | do { |
|---|
| 566 | loc = -1; |
|---|
| 567 | for (int noa = 0; noa < m_numOutputs; noa++) { |
|---|
| 568 | if (o == m_outputList[noa] && (n == -1 || n == m_outputNums[noa])) { |
|---|
| 569 | loc =noa; |
|---|
| 570 | break; |
|---|
| 571 | } |
|---|
| 572 | } |
|---|
| 573 | |
|---|
| 574 | if (loc >= 0) { |
|---|
| 575 | for (int noa = loc+1; noa < m_numOutputs; noa++) { |
|---|
| 576 | m_outputList[noa-1] = m_outputList[noa]; |
|---|
| 577 | m_outputNums[noa-1] = m_outputNums[noa]; |
|---|
| 578 | |
|---|
| 579 | //set the other end to have the right connection number |
|---|
| 580 | m_outputList[noa-1].changeInputNum(m_outputNums[noa-1], noa-1); |
|---|
| 581 | } |
|---|
| 582 | m_numOutputs--; |
|---|
| 583 | removed = true; |
|---|
| 584 | } |
|---|
| 585 | } while (n == -1 && loc != -1); |
|---|
| 586 | |
|---|
| 587 | return removed; |
|---|
| 588 | } |
|---|
| 589 | |
|---|
| 590 | /** |
|---|
| 591 | * This function will remove all outputs to this unit. |
|---|
| 592 | * In doing so it will also terminate the connections at the other end. |
|---|
| 593 | */ |
|---|
| 594 | public void removeAllOutputs() { |
|---|
| 595 | |
|---|
| 596 | for (int noa = 0; noa < m_numOutputs; noa++) { |
|---|
| 597 | //this command will simply remove any connections this node has |
|---|
| 598 | //with the other in 1 go, rather than seperately. |
|---|
| 599 | m_outputList[noa].disconnectInput(this, -1); |
|---|
| 600 | } |
|---|
| 601 | |
|---|
| 602 | //now reset the inputs. |
|---|
| 603 | m_outputList = new NeuralConnection[0]; |
|---|
| 604 | m_outputNums = new int[0]; |
|---|
| 605 | setType(getType() & (~OUTPUT)); |
|---|
| 606 | if (getNumInputs() == 0) { |
|---|
| 607 | setType(getType() & (~CONNECTED)); |
|---|
| 608 | } |
|---|
| 609 | m_numOutputs = 0; |
|---|
| 610 | |
|---|
| 611 | } |
|---|
| 612 | |
|---|
| 613 | /** |
|---|
| 614 | * Changes the connection value information for one of the connections. |
|---|
| 615 | * @param n The connection number to change. |
|---|
| 616 | * @param v The value to change it to. |
|---|
| 617 | */ |
|---|
| 618 | protected void changeOutputNum(int n, int v) { |
|---|
| 619 | |
|---|
| 620 | if (n >= m_numOutputs || n < 0) { |
|---|
| 621 | return; |
|---|
| 622 | } |
|---|
| 623 | |
|---|
| 624 | m_outputNums[n] = v; |
|---|
| 625 | } |
|---|
| 626 | |
|---|
| 627 | /** |
|---|
| 628 | * @return The number of input connections. |
|---|
| 629 | */ |
|---|
| 630 | public int getNumInputs() { |
|---|
| 631 | return m_numInputs; |
|---|
| 632 | } |
|---|
| 633 | |
|---|
| 634 | /** |
|---|
| 635 | * @return The number of output connections. |
|---|
| 636 | */ |
|---|
| 637 | public int getNumOutputs() { |
|---|
| 638 | return m_numOutputs; |
|---|
| 639 | } |
|---|
| 640 | |
|---|
| 641 | |
|---|
| 642 | /** |
|---|
| 643 | * Connects two units together. |
|---|
| 644 | * @param s The source unit. |
|---|
| 645 | * @param t The target unit. |
|---|
| 646 | * @return True if the units were connected, false otherwise. |
|---|
| 647 | */ |
|---|
| 648 | public static boolean connect(NeuralConnection s, NeuralConnection t) { |
|---|
| 649 | |
|---|
| 650 | if (s == null || t == null) { |
|---|
| 651 | return false; |
|---|
| 652 | } |
|---|
| 653 | //this ensures that there is no existing connection between these |
|---|
| 654 | //two units already. This will also cause the current weight there to be |
|---|
| 655 | //lost |
|---|
| 656 | |
|---|
| 657 | disconnect(s, t); |
|---|
| 658 | if (s == t) { |
|---|
| 659 | return false; |
|---|
| 660 | } |
|---|
| 661 | if ((t.getType() & PURE_INPUT) == PURE_INPUT) { |
|---|
| 662 | return false; //target is an input node. |
|---|
| 663 | } |
|---|
| 664 | if ((s.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
|---|
| 665 | return false; //source is an output node |
|---|
| 666 | } |
|---|
| 667 | if ((s.getType() & PURE_INPUT) == PURE_INPUT |
|---|
| 668 | && (t.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
|---|
| 669 | return false; //there is no actual working node in use |
|---|
| 670 | } |
|---|
| 671 | if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT && t.getNumInputs() > 0) { |
|---|
| 672 | return false; //more than 1 node is trying to feed a particular output |
|---|
| 673 | } |
|---|
| 674 | |
|---|
| 675 | if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT && |
|---|
| 676 | (s.getType() & OUTPUT) == OUTPUT) { |
|---|
| 677 | return false; //an output node already feeding out a final answer |
|---|
| 678 | } |
|---|
| 679 | |
|---|
| 680 | if (!s.connectOutput(t, t.getNumInputs())) { |
|---|
| 681 | return false; |
|---|
| 682 | } |
|---|
| 683 | if (!t.connectInput(s, s.getNumOutputs() - 1)) { |
|---|
| 684 | |
|---|
| 685 | s.disconnectOutput(t, t.getNumInputs()); |
|---|
| 686 | return false; |
|---|
| 687 | |
|---|
| 688 | } |
|---|
| 689 | |
|---|
| 690 | //now ammend the type. |
|---|
| 691 | if ((s.getType() & PURE_INPUT) == PURE_INPUT) { |
|---|
| 692 | t.setType(t.getType() | INPUT); |
|---|
| 693 | } |
|---|
| 694 | else if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
|---|
| 695 | s.setType(s.getType() | OUTPUT); |
|---|
| 696 | } |
|---|
| 697 | t.setType(t.getType() | CONNECTED); |
|---|
| 698 | s.setType(s.getType() | CONNECTED); |
|---|
| 699 | return true; |
|---|
| 700 | } |
|---|
| 701 | |
|---|
| 702 | /** |
|---|
| 703 | * Disconnects two units. |
|---|
| 704 | * @param s The source unit. |
|---|
| 705 | * @param t The target unit. |
|---|
| 706 | * @return True if the units were disconnected, false if they weren't |
|---|
| 707 | * (probably due to there being no connection). |
|---|
| 708 | */ |
|---|
| 709 | public static boolean disconnect(NeuralConnection s, NeuralConnection t) { |
|---|
| 710 | |
|---|
| 711 | if (s == null || t == null) { |
|---|
| 712 | return false; |
|---|
| 713 | } |
|---|
| 714 | |
|---|
| 715 | boolean stat1 = s.disconnectOutput(t, -1); |
|---|
| 716 | boolean stat2 = t.disconnectInput(s, -1); |
|---|
| 717 | if (stat1 && stat2) { |
|---|
| 718 | if ((s.getType() & PURE_INPUT) == PURE_INPUT) { |
|---|
| 719 | t.setType(t.getType() & (~INPUT)); |
|---|
| 720 | } |
|---|
| 721 | else if ((t.getType() & (PURE_OUTPUT)) == PURE_OUTPUT) { |
|---|
| 722 | s.setType(s.getType() & (~OUTPUT)); |
|---|
| 723 | } |
|---|
| 724 | if (s.getNumInputs() == 0 && s.getNumOutputs() == 0) { |
|---|
| 725 | s.setType(s.getType() & (~CONNECTED)); |
|---|
| 726 | } |
|---|
| 727 | if (t.getNumInputs() == 0 && t.getNumOutputs() == 0) { |
|---|
| 728 | t.setType(t.getType() & (~CONNECTED)); |
|---|
| 729 | } |
|---|
| 730 | } |
|---|
| 731 | return stat1 && stat2; |
|---|
| 732 | } |
|---|
| 733 | } |
|---|
| 734 | |
|---|
| 735 | |
|---|
| 736 | |
|---|
| 737 | |
|---|
| 738 | |
|---|
| 739 | |
|---|
| 740 | |
|---|
| 741 | |
|---|
| 742 | |
|---|
| 743 | |
|---|
| 744 | |
|---|
| 745 | |
|---|