1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NeuralConnection.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.functions.neural; |
---|
23 | |
---|
24 | import weka.core.RevisionHandler; |
---|
25 | |
---|
26 | import java.awt.Color; |
---|
27 | import java.awt.Graphics; |
---|
28 | import java.io.Serializable; |
---|
29 | |
---|
30 | /** |
---|
31 | * Abstract unit in a NeuralNetwork. |
---|
32 | * |
---|
33 | * @author Malcolm Ware (mfw4@cs.waikato.ac.nz) |
---|
34 | * @version $Revision: 5402 $ |
---|
35 | */ |
---|
36 | public abstract class NeuralConnection |
---|
37 | implements Serializable, RevisionHandler { |
---|
38 | |
---|
39 | /** for serialization */ |
---|
40 | private static final long serialVersionUID = -286208828571059163L; |
---|
41 | |
---|
42 | //bitwise flags for the types of unit. |
---|
43 | |
---|
44 | /** This unit is not connected to any others. */ |
---|
45 | public static final int UNCONNECTED = 0; |
---|
46 | |
---|
47 | /** This unit is a pure input unit. */ |
---|
48 | public static final int PURE_INPUT = 1; |
---|
49 | |
---|
50 | /** This unit is a pure output unit. */ |
---|
51 | public static final int PURE_OUTPUT = 2; |
---|
52 | |
---|
53 | /** This unit is an input unit. */ |
---|
54 | public static final int INPUT = 4; |
---|
55 | |
---|
56 | /** This unit is an output unit. */ |
---|
57 | public static final int OUTPUT = 8; |
---|
58 | |
---|
59 | /** This flag is set once the unit has a connection. */ |
---|
60 | public static final int CONNECTED = 16; |
---|
61 | |
---|
62 | |
---|
63 | |
---|
64 | /////The difference between pure and not is that pure is used to feed |
---|
65 | /////the neural network the attribute values and the errors on the outputs |
---|
66 | /////Beyond that they do no calculations, and have certain restrictions |
---|
67 | /////on the connections they can make. |
---|
68 | |
---|
69 | |
---|
70 | |
---|
71 | /** The list of inputs to this unit. */ |
---|
72 | protected NeuralConnection[] m_inputList; |
---|
73 | |
---|
74 | /** The list of outputs from this unit. */ |
---|
75 | protected NeuralConnection[] m_outputList; |
---|
76 | |
---|
77 | /** The numbering for the connections at the other end of the input lines. */ |
---|
78 | protected int[] m_inputNums; |
---|
79 | |
---|
80 | /** The numbering for the connections at the other end of the out lines. */ |
---|
81 | protected int[] m_outputNums; |
---|
82 | |
---|
83 | /** The number of inputs. */ |
---|
84 | protected int m_numInputs; |
---|
85 | |
---|
86 | /** The number of outputs. */ |
---|
87 | protected int m_numOutputs; |
---|
88 | |
---|
89 | /** The output value for this unit, NaN if not calculated. */ |
---|
90 | protected double m_unitValue; |
---|
91 | |
---|
92 | /** The error value for this unit, NaN if not calculated. */ |
---|
93 | protected double m_unitError; |
---|
94 | |
---|
95 | /** True if the weights have already been updated. */ |
---|
96 | protected boolean m_weightsUpdated; |
---|
97 | |
---|
98 | /** The string that uniquely (provided naming is done properly) identifies |
---|
99 | * this unit. */ |
---|
100 | protected String m_id; |
---|
101 | |
---|
102 | /** The type of unit this is. */ |
---|
103 | protected int m_type; |
---|
104 | |
---|
105 | /** The x coord of this unit purely for displaying purposes. */ |
---|
106 | protected double m_x; |
---|
107 | |
---|
108 | /** The y coord of this unit purely for displaying purposes. */ |
---|
109 | protected double m_y; |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | |
---|
114 | /** |
---|
115 | * Constructs The unit with the basic connection information prepared for |
---|
116 | * use. |
---|
117 | * |
---|
118 | * @param id the unique id of the unit |
---|
119 | */ |
---|
120 | public NeuralConnection(String id) { |
---|
121 | |
---|
122 | m_id = id; |
---|
123 | m_inputList = new NeuralConnection[0]; |
---|
124 | m_outputList = new NeuralConnection[0]; |
---|
125 | m_inputNums = new int[0]; |
---|
126 | m_outputNums = new int[0]; |
---|
127 | |
---|
128 | m_numInputs = 0; |
---|
129 | m_numOutputs = 0; |
---|
130 | |
---|
131 | m_unitValue = Double.NaN; |
---|
132 | m_unitError = Double.NaN; |
---|
133 | |
---|
134 | m_weightsUpdated = false; |
---|
135 | m_x = 0; |
---|
136 | m_y = 0; |
---|
137 | m_type = UNCONNECTED; |
---|
138 | } |
---|
139 | |
---|
140 | |
---|
141 | /** |
---|
142 | * @return The identity string of this unit. |
---|
143 | */ |
---|
144 | public String getId() { |
---|
145 | return m_id; |
---|
146 | } |
---|
147 | |
---|
148 | /** |
---|
149 | * @return The type of this unit. |
---|
150 | */ |
---|
151 | public int getType() { |
---|
152 | return m_type; |
---|
153 | } |
---|
154 | |
---|
155 | /** |
---|
156 | * @param t The new type of this unit. |
---|
157 | */ |
---|
158 | public void setType(int t) { |
---|
159 | m_type = t; |
---|
160 | } |
---|
161 | |
---|
162 | /** |
---|
163 | * Call this to reset the unit for another run. |
---|
164 | * It is expected by that this unit will call the reset functions of all |
---|
165 | * input units to it. It is also expected that this will not be done |
---|
166 | * if the unit has already been reset (or atleast appears to be). |
---|
167 | */ |
---|
168 | public abstract void reset(); |
---|
169 | |
---|
170 | /** |
---|
171 | * Call this to get the output value of this unit. |
---|
172 | * @param calculate True if the value should be calculated if it hasn't been |
---|
173 | * already. |
---|
174 | * @return The output value, or NaN, if the value has not been calculated. |
---|
175 | */ |
---|
176 | public abstract double outputValue(boolean calculate); |
---|
177 | |
---|
178 | /** |
---|
179 | * Call this to get the error value of this unit. |
---|
180 | * @param calculate True if the value should be calculated if it hasn't been |
---|
181 | * already. |
---|
182 | * @return The error value, or NaN, if the value has not been calculated. |
---|
183 | */ |
---|
184 | public abstract double errorValue(boolean calculate); |
---|
185 | |
---|
186 | /** |
---|
187 | * Call this to have the connection save the current |
---|
188 | * weights. |
---|
189 | */ |
---|
190 | public abstract void saveWeights(); |
---|
191 | |
---|
192 | /** |
---|
193 | * Call this to have the connection restore from the saved |
---|
194 | * weights. |
---|
195 | */ |
---|
196 | public abstract void restoreWeights(); |
---|
197 | |
---|
198 | /** |
---|
199 | * Call this to get the weight value on a particular connection. |
---|
200 | * @param n The connection number to get the weight for, -1 if The threshold |
---|
201 | * weight should be returned. |
---|
202 | * @return This function will default to return 1. If overridden, it should |
---|
203 | * return the value for the specified connection or if -1 then it should |
---|
204 | * return the threshold value. If no value exists for the specified |
---|
205 | * connection, NaN will be returned. |
---|
206 | */ |
---|
207 | public double weightValue(int n) { |
---|
208 | return 1; |
---|
209 | } |
---|
210 | |
---|
211 | /** |
---|
212 | * Call this function to update the weight values at this unit. |
---|
213 | * After the weights have been updated at this unit, All the |
---|
214 | * input connections will then be called from this to have their |
---|
215 | * weights updated. |
---|
216 | * @param l The learning Rate to use. |
---|
217 | * @param m The momentum to use. |
---|
218 | */ |
---|
219 | public void updateWeights(double l, double m) { |
---|
220 | |
---|
221 | //the action the subclasses should perform is upto them |
---|
222 | //but if they coverride they should make a call to this to |
---|
223 | //call the method for all their inputs. |
---|
224 | |
---|
225 | if (!m_weightsUpdated) { |
---|
226 | for (int noa = 0; noa < m_numInputs; noa++) { |
---|
227 | m_inputList[noa].updateWeights(l, m); |
---|
228 | } |
---|
229 | m_weightsUpdated = true; |
---|
230 | } |
---|
231 | |
---|
232 | } |
---|
233 | |
---|
234 | /** |
---|
235 | * Use this to get easy access to the inputs. |
---|
236 | * It is not advised to change the entries in this list |
---|
237 | * (use the connecting and disconnecting functions to do that) |
---|
238 | * @return The inputs list. |
---|
239 | */ |
---|
240 | public NeuralConnection[] getInputs() { |
---|
241 | return m_inputList; |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Use this to get easy access to the outputs. |
---|
246 | * It is not advised to change the entries in this list |
---|
247 | * (use the connecting and disconnecting functions to do that) |
---|
248 | * @return The outputs list. |
---|
249 | */ |
---|
250 | public NeuralConnection[] getOutputs() { |
---|
251 | return m_outputList; |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * Use this to get easy access to the input numbers. |
---|
256 | * It is not advised to change the entries in this list |
---|
257 | * (use the connecting and disconnecting functions to do that) |
---|
258 | * @return The input nums list. |
---|
259 | */ |
---|
260 | public int[] getInputNums() { |
---|
261 | return m_inputNums; |
---|
262 | } |
---|
263 | |
---|
264 | /** |
---|
265 | * Use this to get easy access to the output numbers. |
---|
266 | * It is not advised to change the entries in this list |
---|
267 | * (use the connecting and disconnecting functions to do that) |
---|
268 | * @return The outputs list. |
---|
269 | */ |
---|
270 | public int[] getOutputNums() { |
---|
271 | return m_outputNums; |
---|
272 | } |
---|
273 | |
---|
274 | /** |
---|
275 | * @return the x coord. |
---|
276 | */ |
---|
277 | public double getX() { |
---|
278 | return m_x; |
---|
279 | } |
---|
280 | |
---|
281 | /** |
---|
282 | * @return the y coord. |
---|
283 | */ |
---|
284 | public double getY() { |
---|
285 | return m_y; |
---|
286 | } |
---|
287 | |
---|
288 | /** |
---|
289 | * @param x The new value for it's x pos. |
---|
290 | */ |
---|
291 | public void setX(double x) { |
---|
292 | m_x = x; |
---|
293 | } |
---|
294 | |
---|
295 | /** |
---|
296 | * @param y The new value for it's y pos. |
---|
297 | */ |
---|
298 | public void setY(double y) { |
---|
299 | m_y = y; |
---|
300 | } |
---|
301 | |
---|
302 | |
---|
303 | /** |
---|
304 | * Call this function to determine if the point at x,y is on the unit. |
---|
305 | * @param g The graphics context for font size info. |
---|
306 | * @param x The x coord. |
---|
307 | * @param y The y coord. |
---|
308 | * @param w The width of the display. |
---|
309 | * @param h The height of the display. |
---|
310 | * @return True if the point is on the unit, false otherwise. |
---|
311 | */ |
---|
312 | public boolean onUnit(Graphics g, int x, int y, int w, int h) { |
---|
313 | |
---|
314 | int m = (int)(m_x * w); |
---|
315 | int c = (int)(m_y * h); |
---|
316 | if (x > m + 10 || x < m - 10 || y > c + 10 || y < c - 10) { |
---|
317 | return false; |
---|
318 | } |
---|
319 | return true; |
---|
320 | |
---|
321 | } |
---|
322 | |
---|
323 | /** |
---|
324 | * Call this function to draw the node. |
---|
325 | * @param g The graphics context. |
---|
326 | * @param w The width of the drawing area. |
---|
327 | * @param h The height of the drawing area. |
---|
328 | */ |
---|
329 | public void drawNode(Graphics g, int w, int h) { |
---|
330 | |
---|
331 | if ((m_type & OUTPUT) == OUTPUT) { |
---|
332 | g.setColor(Color.orange); |
---|
333 | } |
---|
334 | else { |
---|
335 | g.setColor(Color.red); |
---|
336 | } |
---|
337 | g.fillOval((int)(m_x * w) - 9, (int)(m_y * h) - 9, 19, 19); |
---|
338 | g.setColor(Color.gray); |
---|
339 | g.fillOval((int)(m_x * w) - 5, (int)(m_y * h) - 5, 11, 11); |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * Call this function to draw the node highlighted. |
---|
344 | * @param g The graphics context. |
---|
345 | * @param w The width of the drawing area. |
---|
346 | * @param h The height of the drawing area. |
---|
347 | */ |
---|
348 | public void drawHighlight(Graphics g, int w, int h) { |
---|
349 | |
---|
350 | drawNode(g, w, h); |
---|
351 | g.setColor(Color.yellow); |
---|
352 | g.fillOval((int)(m_x * w) - 5, (int)(m_y * h) - 5, 11, 11); |
---|
353 | } |
---|
354 | |
---|
355 | /** |
---|
356 | * Call this function to draw the nodes input connections. |
---|
357 | * @param g The graphics context. |
---|
358 | * @param w The width of the drawing area. |
---|
359 | * @param h The height of the drawing area. |
---|
360 | */ |
---|
361 | public void drawInputLines(Graphics g, int w, int h) { |
---|
362 | |
---|
363 | g.setColor(Color.black); |
---|
364 | |
---|
365 | int px = (int)(m_x * w); |
---|
366 | int py = (int)(m_y * h); |
---|
367 | for (int noa = 0; noa < m_numInputs; noa++) { |
---|
368 | g.drawLine((int)(m_inputList[noa].getX() * w) |
---|
369 | , (int)(m_inputList[noa].getY() * h) |
---|
370 | , px, py); |
---|
371 | } |
---|
372 | } |
---|
373 | |
---|
374 | /** |
---|
375 | * Call this function to draw the nodes output connections. |
---|
376 | * @param g The graphics context. |
---|
377 | * @param w The width of the drawing area. |
---|
378 | * @param h The height of the drawing area. |
---|
379 | */ |
---|
380 | public void drawOutputLines(Graphics g, int w, int h) { |
---|
381 | |
---|
382 | g.setColor(Color.black); |
---|
383 | |
---|
384 | int px = (int)(m_x * w); |
---|
385 | int py = (int)(m_y * h); |
---|
386 | for (int noa = 0; noa < m_numOutputs; noa++) { |
---|
387 | g.drawLine(px, py |
---|
388 | , (int)(m_outputList[noa].getX() * w) |
---|
389 | , (int)(m_outputList[noa].getY() * h)); |
---|
390 | } |
---|
391 | } |
---|
392 | |
---|
393 | |
---|
394 | /** |
---|
395 | * This will connect the specified unit to be an input to this unit. |
---|
396 | * @param i The unit. |
---|
397 | * @param n It's connection number for this connection. |
---|
398 | * @return True if the connection was made, false otherwise. |
---|
399 | */ |
---|
400 | protected boolean connectInput(NeuralConnection i, int n) { |
---|
401 | |
---|
402 | for (int noa = 0; noa < m_numInputs; noa++) { |
---|
403 | if (i == m_inputList[noa]) { |
---|
404 | return false; |
---|
405 | } |
---|
406 | } |
---|
407 | if (m_numInputs >= m_inputList.length) { |
---|
408 | //then allocate more space to it. |
---|
409 | allocateInputs(); |
---|
410 | } |
---|
411 | m_inputList[m_numInputs] = i; |
---|
412 | m_inputNums[m_numInputs] = n; |
---|
413 | m_numInputs++; |
---|
414 | return true; |
---|
415 | } |
---|
416 | |
---|
417 | /** |
---|
418 | * This will allocate more space for input connection information |
---|
419 | * if the arrays for this have been filled up. |
---|
420 | */ |
---|
421 | protected void allocateInputs() { |
---|
422 | |
---|
423 | NeuralConnection[] temp1 = new NeuralConnection[m_inputList.length + 15]; |
---|
424 | int[] temp2 = new int[m_inputNums.length + 15]; |
---|
425 | |
---|
426 | for (int noa = 0; noa < m_numInputs; noa++) { |
---|
427 | temp1[noa] = m_inputList[noa]; |
---|
428 | temp2[noa] = m_inputNums[noa]; |
---|
429 | } |
---|
430 | m_inputList = temp1; |
---|
431 | m_inputNums = temp2; |
---|
432 | } |
---|
433 | |
---|
434 | /** |
---|
435 | * This will connect the specified unit to be an output to this unit. |
---|
436 | * @param o The unit. |
---|
437 | * @param n It's connection number for this connection. |
---|
438 | * @return True if the connection was made, false otherwise. |
---|
439 | */ |
---|
440 | protected boolean connectOutput(NeuralConnection o, int n) { |
---|
441 | |
---|
442 | for (int noa = 0; noa < m_numOutputs; noa++) { |
---|
443 | if (o == m_outputList[noa]) { |
---|
444 | return false; |
---|
445 | } |
---|
446 | } |
---|
447 | if (m_numOutputs >= m_outputList.length) { |
---|
448 | //then allocate more space to it. |
---|
449 | allocateOutputs(); |
---|
450 | } |
---|
451 | m_outputList[m_numOutputs] = o; |
---|
452 | m_outputNums[m_numOutputs] = n; |
---|
453 | m_numOutputs++; |
---|
454 | return true; |
---|
455 | } |
---|
456 | |
---|
457 | /** |
---|
458 | * Allocates more space for output connection information |
---|
459 | * if the arrays have been filled up. |
---|
460 | */ |
---|
461 | protected void allocateOutputs() { |
---|
462 | |
---|
463 | NeuralConnection[] temp1 |
---|
464 | = new NeuralConnection[m_outputList.length + 15]; |
---|
465 | |
---|
466 | int[] temp2 = new int[m_outputNums.length + 15]; |
---|
467 | |
---|
468 | for (int noa = 0; noa < m_numOutputs; noa++) { |
---|
469 | temp1[noa] = m_outputList[noa]; |
---|
470 | temp2[noa] = m_outputNums[noa]; |
---|
471 | } |
---|
472 | m_outputList = temp1; |
---|
473 | m_outputNums = temp2; |
---|
474 | } |
---|
475 | |
---|
476 | /** |
---|
477 | * This will disconnect the input with the specific connection number |
---|
478 | * From this node (only on this end however). |
---|
479 | * @param i The unit to disconnect. |
---|
480 | * @param n The connection number at the other end, -1 if all the connections |
---|
481 | * to this unit should be severed. |
---|
482 | * @return True if the connection was removed, false if the connection was |
---|
483 | * not found. |
---|
484 | */ |
---|
485 | protected boolean disconnectInput(NeuralConnection i, int n) { |
---|
486 | |
---|
487 | int loc = -1; |
---|
488 | boolean removed = false; |
---|
489 | do { |
---|
490 | loc = -1; |
---|
491 | for (int noa = 0; noa < m_numInputs; noa++) { |
---|
492 | if (i == m_inputList[noa] && (n == -1 || n == m_inputNums[noa])) { |
---|
493 | loc = noa; |
---|
494 | break; |
---|
495 | } |
---|
496 | } |
---|
497 | |
---|
498 | if (loc >= 0) { |
---|
499 | for (int noa = loc+1; noa < m_numInputs; noa++) { |
---|
500 | m_inputList[noa-1] = m_inputList[noa]; |
---|
501 | m_inputNums[noa-1] = m_inputNums[noa]; |
---|
502 | //set the other end to have the right connection number. |
---|
503 | m_inputList[noa-1].changeOutputNum(m_inputNums[noa-1], noa-1); |
---|
504 | } |
---|
505 | m_numInputs--; |
---|
506 | removed = true; |
---|
507 | } |
---|
508 | } while (n == -1 && loc != -1); |
---|
509 | |
---|
510 | return removed; |
---|
511 | } |
---|
512 | |
---|
513 | /** |
---|
514 | * This function will remove all the inputs to this unit. |
---|
515 | * In doing so it will also terminate the connections at the other end. |
---|
516 | */ |
---|
517 | public void removeAllInputs() { |
---|
518 | |
---|
519 | for (int noa = 0; noa < m_numInputs; noa++) { |
---|
520 | //this command will simply remove any connections this node has |
---|
521 | //with the other in 1 go, rather than seperately. |
---|
522 | m_inputList[noa].disconnectOutput(this, -1); |
---|
523 | } |
---|
524 | |
---|
525 | //now reset the inputs. |
---|
526 | m_inputList = new NeuralConnection[0]; |
---|
527 | setType(getType() & (~INPUT)); |
---|
528 | if (getNumOutputs() == 0) { |
---|
529 | setType(getType() & (~CONNECTED)); |
---|
530 | } |
---|
531 | m_inputNums = new int[0]; |
---|
532 | m_numInputs = 0; |
---|
533 | |
---|
534 | } |
---|
535 | |
---|
536 | |
---|
537 | |
---|
538 | /** |
---|
539 | * Changes the connection value information for one of the connections. |
---|
540 | * @param n The connection number to change. |
---|
541 | * @param v The value to change it to. |
---|
542 | */ |
---|
543 | protected void changeInputNum(int n, int v) { |
---|
544 | |
---|
545 | if (n >= m_numInputs || n < 0) { |
---|
546 | return; |
---|
547 | } |
---|
548 | |
---|
549 | m_inputNums[n] = v; |
---|
550 | } |
---|
551 | |
---|
552 | /** |
---|
553 | * This will disconnect the output with the specific connection number |
---|
554 | * From this node (only on this end however). |
---|
555 | * @param o The unit to disconnect. |
---|
556 | * @param n The connection number at the other end, -1 if all the connections |
---|
557 | * to this unit should be severed. |
---|
558 | * @return True if the connection was removed, false if the connection was |
---|
559 | * not found. |
---|
560 | */ |
---|
561 | protected boolean disconnectOutput(NeuralConnection o, int n) { |
---|
562 | |
---|
563 | int loc = -1; |
---|
564 | boolean removed = false; |
---|
565 | do { |
---|
566 | loc = -1; |
---|
567 | for (int noa = 0; noa < m_numOutputs; noa++) { |
---|
568 | if (o == m_outputList[noa] && (n == -1 || n == m_outputNums[noa])) { |
---|
569 | loc =noa; |
---|
570 | break; |
---|
571 | } |
---|
572 | } |
---|
573 | |
---|
574 | if (loc >= 0) { |
---|
575 | for (int noa = loc+1; noa < m_numOutputs; noa++) { |
---|
576 | m_outputList[noa-1] = m_outputList[noa]; |
---|
577 | m_outputNums[noa-1] = m_outputNums[noa]; |
---|
578 | |
---|
579 | //set the other end to have the right connection number |
---|
580 | m_outputList[noa-1].changeInputNum(m_outputNums[noa-1], noa-1); |
---|
581 | } |
---|
582 | m_numOutputs--; |
---|
583 | removed = true; |
---|
584 | } |
---|
585 | } while (n == -1 && loc != -1); |
---|
586 | |
---|
587 | return removed; |
---|
588 | } |
---|
589 | |
---|
590 | /** |
---|
591 | * This function will remove all outputs to this unit. |
---|
592 | * In doing so it will also terminate the connections at the other end. |
---|
593 | */ |
---|
594 | public void removeAllOutputs() { |
---|
595 | |
---|
596 | for (int noa = 0; noa < m_numOutputs; noa++) { |
---|
597 | //this command will simply remove any connections this node has |
---|
598 | //with the other in 1 go, rather than seperately. |
---|
599 | m_outputList[noa].disconnectInput(this, -1); |
---|
600 | } |
---|
601 | |
---|
602 | //now reset the inputs. |
---|
603 | m_outputList = new NeuralConnection[0]; |
---|
604 | m_outputNums = new int[0]; |
---|
605 | setType(getType() & (~OUTPUT)); |
---|
606 | if (getNumInputs() == 0) { |
---|
607 | setType(getType() & (~CONNECTED)); |
---|
608 | } |
---|
609 | m_numOutputs = 0; |
---|
610 | |
---|
611 | } |
---|
612 | |
---|
613 | /** |
---|
614 | * Changes the connection value information for one of the connections. |
---|
615 | * @param n The connection number to change. |
---|
616 | * @param v The value to change it to. |
---|
617 | */ |
---|
618 | protected void changeOutputNum(int n, int v) { |
---|
619 | |
---|
620 | if (n >= m_numOutputs || n < 0) { |
---|
621 | return; |
---|
622 | } |
---|
623 | |
---|
624 | m_outputNums[n] = v; |
---|
625 | } |
---|
626 | |
---|
627 | /** |
---|
628 | * @return The number of input connections. |
---|
629 | */ |
---|
630 | public int getNumInputs() { |
---|
631 | return m_numInputs; |
---|
632 | } |
---|
633 | |
---|
634 | /** |
---|
635 | * @return The number of output connections. |
---|
636 | */ |
---|
637 | public int getNumOutputs() { |
---|
638 | return m_numOutputs; |
---|
639 | } |
---|
640 | |
---|
641 | |
---|
642 | /** |
---|
643 | * Connects two units together. |
---|
644 | * @param s The source unit. |
---|
645 | * @param t The target unit. |
---|
646 | * @return True if the units were connected, false otherwise. |
---|
647 | */ |
---|
648 | public static boolean connect(NeuralConnection s, NeuralConnection t) { |
---|
649 | |
---|
650 | if (s == null || t == null) { |
---|
651 | return false; |
---|
652 | } |
---|
653 | //this ensures that there is no existing connection between these |
---|
654 | //two units already. This will also cause the current weight there to be |
---|
655 | //lost |
---|
656 | |
---|
657 | disconnect(s, t); |
---|
658 | if (s == t) { |
---|
659 | return false; |
---|
660 | } |
---|
661 | if ((t.getType() & PURE_INPUT) == PURE_INPUT) { |
---|
662 | return false; //target is an input node. |
---|
663 | } |
---|
664 | if ((s.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
---|
665 | return false; //source is an output node |
---|
666 | } |
---|
667 | if ((s.getType() & PURE_INPUT) == PURE_INPUT |
---|
668 | && (t.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
---|
669 | return false; //there is no actual working node in use |
---|
670 | } |
---|
671 | if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT && t.getNumInputs() > 0) { |
---|
672 | return false; //more than 1 node is trying to feed a particular output |
---|
673 | } |
---|
674 | |
---|
675 | if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT && |
---|
676 | (s.getType() & OUTPUT) == OUTPUT) { |
---|
677 | return false; //an output node already feeding out a final answer |
---|
678 | } |
---|
679 | |
---|
680 | if (!s.connectOutput(t, t.getNumInputs())) { |
---|
681 | return false; |
---|
682 | } |
---|
683 | if (!t.connectInput(s, s.getNumOutputs() - 1)) { |
---|
684 | |
---|
685 | s.disconnectOutput(t, t.getNumInputs()); |
---|
686 | return false; |
---|
687 | |
---|
688 | } |
---|
689 | |
---|
690 | //now ammend the type. |
---|
691 | if ((s.getType() & PURE_INPUT) == PURE_INPUT) { |
---|
692 | t.setType(t.getType() | INPUT); |
---|
693 | } |
---|
694 | else if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
---|
695 | s.setType(s.getType() | OUTPUT); |
---|
696 | } |
---|
697 | t.setType(t.getType() | CONNECTED); |
---|
698 | s.setType(s.getType() | CONNECTED); |
---|
699 | return true; |
---|
700 | } |
---|
701 | |
---|
702 | /** |
---|
703 | * Disconnects two units. |
---|
704 | * @param s The source unit. |
---|
705 | * @param t The target unit. |
---|
706 | * @return True if the units were disconnected, false if they weren't |
---|
707 | * (probably due to there being no connection). |
---|
708 | */ |
---|
709 | public static boolean disconnect(NeuralConnection s, NeuralConnection t) { |
---|
710 | |
---|
711 | if (s == null || t == null) { |
---|
712 | return false; |
---|
713 | } |
---|
714 | |
---|
715 | boolean stat1 = s.disconnectOutput(t, -1); |
---|
716 | boolean stat2 = t.disconnectInput(s, -1); |
---|
717 | if (stat1 && stat2) { |
---|
718 | if ((s.getType() & PURE_INPUT) == PURE_INPUT) { |
---|
719 | t.setType(t.getType() & (~INPUT)); |
---|
720 | } |
---|
721 | else if ((t.getType() & (PURE_OUTPUT)) == PURE_OUTPUT) { |
---|
722 | s.setType(s.getType() & (~OUTPUT)); |
---|
723 | } |
---|
724 | if (s.getNumInputs() == 0 && s.getNumOutputs() == 0) { |
---|
725 | s.setType(s.getType() & (~CONNECTED)); |
---|
726 | } |
---|
727 | if (t.getNumInputs() == 0 && t.getNumOutputs() == 0) { |
---|
728 | t.setType(t.getType() & (~CONNECTED)); |
---|
729 | } |
---|
730 | } |
---|
731 | return stat1 && stat2; |
---|
732 | } |
---|
733 | } |
---|
734 | |
---|
735 | |
---|
736 | |
---|
737 | |
---|
738 | |
---|
739 | |
---|
740 | |
---|
741 | |
---|
742 | |
---|
743 | |
---|
744 | |
---|
745 | |
---|