source: src/main/java/weka/classifiers/functions/Winnow.java @ 7

Last change on this file since 7 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 22.9 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    Winnow.java
19 *    Copyright (C) 2002 J. Lindgren
20 *
21 */
22package weka.classifiers.functions;
23
24import weka.classifiers.Classifier;
25import weka.classifiers.AbstractClassifier;
26import weka.classifiers.UpdateableClassifier;
27import weka.core.Capabilities;
28import weka.core.Instance;
29import weka.core.Instances;
30import weka.core.Option;
31import weka.core.RevisionUtils;
32import weka.core.TechnicalInformation;
33import weka.core.TechnicalInformationHandler;
34import weka.core.Utils;
35import weka.core.Capabilities.Capability;
36import weka.core.TechnicalInformation.Field;
37import weka.core.TechnicalInformation.Type;
38import weka.filters.Filter;
39import weka.filters.unsupervised.attribute.NominalToBinary;
40import weka.filters.unsupervised.attribute.ReplaceMissingValues;
41
42import java.util.Enumeration;
43import java.util.Random;
44import java.util.Vector;
45
46/**
47 <!-- globalinfo-start -->
48 * Implements Winnow and Balanced Winnow algorithms by Littlestone.<br/>
49 * <br/>
50 * For more information, see<br/>
51 * <br/>
52 * N. Littlestone (1988). Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm. Machine Learning. 2:285-318.<br/>
53 * <br/>
54 * N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. University of California, Santa Cruz.<br/>
55 * <br/>
56 * Does classification for problems with nominal attributes (which it converts into binary attributes).
57 * <p/>
58 <!-- globalinfo-end -->
59 *
60 <!-- technical-bibtex-start -->
61 * BibTeX:
62 * <pre>
63 * &#64;article{Littlestone1988,
64 *    author = {N. Littlestone},
65 *    journal = {Machine Learning},
66 *    pages = {285-318},
67 *    title = {Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm},
68 *    volume = {2},
69 *    year = {1988}
70 * }
71 *
72 * &#64;techreport{Littlestone1989,
73 *    address = {University of California, Santa Cruz},
74 *    author = {N. Littlestone},
75 *    institution = {University of California},
76 *    note = {Technical Report UCSC-CRL-89-11},
77 *    title = {Mistake bounds and logarithmic linear-threshold learning algorithms},
78 *    year = {1989}
79 * }
80 * </pre>
81 * <p/>
82 <!-- technical-bibtex-end -->
83 *
84 <!-- options-start -->
85 * Valid options are: <p/>
86 *
87 * <pre> -L
88 *  Use the baLanced version
89 *  (default false)</pre>
90 *
91 * <pre> -I &lt;int&gt;
92 *  The number of iterations to be performed.
93 *  (default 1)</pre>
94 *
95 * <pre> -A &lt;double&gt;
96 *  Promotion coefficient alpha.
97 *  (default 2.0)</pre>
98 *
99 * <pre> -B &lt;double&gt;
100 *  Demotion coefficient beta.
101 *  (default 0.5)</pre>
102 *
103 * <pre> -H &lt;double&gt;
104 *  Prediction threshold.
105 *  (default -1.0 == number of attributes)</pre>
106 *
107 * <pre> -W &lt;double&gt;
108 *  Starting weights.
109 *  (default 2.0)</pre>
110 *
111 * <pre> -S &lt;int&gt;
112 *  Default random seed.
113 *  (default 1)</pre>
114 *
115 <!-- options-end -->
116 *
117 * @author J. Lindgren (jtlindgr at cs.helsinki.fi)
118 * @version $Revision: 5928 $
119*/
120public class Winnow 
121  extends AbstractClassifier
122  implements UpdateableClassifier, TechnicalInformationHandler {
123 
124  /** for serialization */
125  static final long serialVersionUID = 3543770107994321324L;
126 
127  /** Use the balanced variant? **/
128  protected boolean m_Balanced;
129 
130  /** The number of iterations **/
131  protected int m_numIterations = 1;
132
133  /** The promotion coefficient **/
134  protected double m_Alpha = 2.0;
135
136  /** The demotion coefficient **/
137  protected double m_Beta = 0.5;
138
139  /** Prediction threshold, <0 == numAttributes **/
140  protected double m_Threshold = -1.0;
141 
142  /** Random seed used for shuffling the dataset, -1 == disable **/
143  protected int m_Seed = 1;
144
145  /** Accumulated mistake count (for statistics) **/
146  protected int m_Mistakes;
147
148  /** Starting weights for the prediction vector(s) **/
149  protected double m_defaultWeight = 2.0;
150 
151  /** The weight vector for prediction (pos) */
152  private double[] m_predPosVector = null;
153 
154  /** The weight vector for prediction (neg) */
155  private double[] m_predNegVector = null;
156
157  /** The true threshold used for prediction **/
158  private double m_actualThreshold;
159
160  /** The training instances */
161  private Instances m_Train = null;
162
163  /** The filter used to make attributes numeric. */
164  private NominalToBinary m_NominalToBinary;
165
166  /** The filter used to get rid of missing values. */
167  private ReplaceMissingValues m_ReplaceMissingValues;
168
169  /**
170   * Returns a string describing classifier
171   * @return a description suitable for
172   * displaying in the explorer/experimenter gui
173   */
174  public String globalInfo() {
175
176    return  "Implements Winnow and Balanced Winnow algorithms by "
177      + "Littlestone.\n\n"
178      + "For more information, see\n\n"
179      + getTechnicalInformation().toString()
180      + "\n\n"
181      + "Does classification for problems with nominal attributes "
182      + "(which it converts into binary attributes).";
183  }
184
185  /**
186   * Returns an instance of a TechnicalInformation object, containing
187   * detailed information about the technical background of this class,
188   * e.g., paper reference or book this class is based on.
189   *
190   * @return the technical information about this class
191   */
192  public TechnicalInformation getTechnicalInformation() {
193    TechnicalInformation        result;
194    TechnicalInformation        additional;
195   
196    result = new TechnicalInformation(Type.ARTICLE);
197    result.setValue(Field.AUTHOR, "N. Littlestone");
198    result.setValue(Field.YEAR, "1988");
199    result.setValue(Field.TITLE, "Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm");
200    result.setValue(Field.JOURNAL, "Machine Learning");
201    result.setValue(Field.VOLUME, "2");
202    result.setValue(Field.PAGES, "285-318");
203   
204    additional = result.add(Type.TECHREPORT);
205    additional.setValue(Field.AUTHOR, "N. Littlestone");
206    additional.setValue(Field.YEAR, "1989");
207    additional.setValue(Field.TITLE, "Mistake bounds and logarithmic linear-threshold learning algorithms");
208    additional.setValue(Field.INSTITUTION, "University of California");
209    additional.setValue(Field.ADDRESS, "University of California, Santa Cruz");
210    additional.setValue(Field.NOTE, "Technical Report UCSC-CRL-89-11");
211   
212    return result;
213  }
214
215  /**
216   * Returns an enumeration describing the available options
217   *
218   * @return an enumeration of all the available options
219   */
220  public Enumeration listOptions() {
221
222    Vector newVector = new Vector(7);
223   
224    newVector.addElement(new Option("\tUse the baLanced version\n"
225                                    + "\t(default false)",
226                                    "L", 0, "-L"));
227    newVector.addElement(new Option("\tThe number of iterations to be performed.\n"
228                                    + "\t(default 1)",
229                                    "I", 1, "-I <int>"));
230    newVector.addElement(new Option("\tPromotion coefficient alpha.\n"
231                                    + "\t(default 2.0)",
232                                    "A", 1, "-A <double>"));
233    newVector.addElement(new Option("\tDemotion coefficient beta.\n"
234                                    + "\t(default 0.5)",
235                                    "B", 1, "-B <double>"));
236    newVector.addElement(new Option("\tPrediction threshold.\n"
237                                    + "\t(default -1.0 == number of attributes)",
238                                    "H", 1, "-H <double>"));
239    newVector.addElement(new Option("\tStarting weights.\n"
240                                    + "\t(default 2.0)",
241                                    "W", 1, "-W <double>"));
242    newVector.addElement(new Option("\tDefault random seed.\n"
243                                    + "\t(default 1)",
244                                    "S", 1, "-S <int>"));
245
246    return newVector.elements();
247  }
248
249  /**
250   * Parses a given list of options.<p/>
251   *
252   <!-- options-start -->
253   * Valid options are: <p/>
254   *
255   * <pre> -L
256   *  Use the baLanced version
257   *  (default false)</pre>
258   *
259   * <pre> -I &lt;int&gt;
260   *  The number of iterations to be performed.
261   *  (default 1)</pre>
262   *
263   * <pre> -A &lt;double&gt;
264   *  Promotion coefficient alpha.
265   *  (default 2.0)</pre>
266   *
267   * <pre> -B &lt;double&gt;
268   *  Demotion coefficient beta.
269   *  (default 0.5)</pre>
270   *
271   * <pre> -H &lt;double&gt;
272   *  Prediction threshold.
273   *  (default -1.0 == number of attributes)</pre>
274   *
275   * <pre> -W &lt;double&gt;
276   *  Starting weights.
277   *  (default 2.0)</pre>
278   *
279   * <pre> -S &lt;int&gt;
280   *  Default random seed.
281   *  (default 1)</pre>
282   *
283   <!-- options-end -->
284   *
285   * @param options the list of options as an array of strings
286   * @throws Exception if an option is not supported
287   */
288  public void setOptions(String[] options) throws Exception {
289   
290    m_Balanced = Utils.getFlag('L', options);
291       
292    String iterationsString = Utils.getOption('I', options);
293    if (iterationsString.length() != 0) {
294      m_numIterations = Integer.parseInt(iterationsString);
295    }
296    String alphaString = Utils.getOption('A', options);
297    if (alphaString.length() != 0) { 
298      m_Alpha = (new Double(alphaString)).doubleValue();
299    }
300    String betaString = Utils.getOption('B', options);
301    if (betaString.length() != 0) {
302      m_Beta = (new Double(betaString)).doubleValue();
303    }
304    String tString = Utils.getOption('H', options);
305    if (tString.length() != 0) {
306      m_Threshold = (new Double(tString)).doubleValue();
307    }
308    String wString = Utils.getOption('W', options);
309    if (wString.length() != 0) {
310      m_defaultWeight = (new Double(wString)).doubleValue();
311    }
312    String rString = Utils.getOption('S', options);
313    if (rString.length() != 0) {
314      m_Seed = Integer.parseInt(rString);
315    }
316  }
317
318  /**
319   * Gets the current settings of the classifier.
320   *
321   * @return an array of strings suitable for passing to setOptions
322   */
323  public String[] getOptions() {
324
325    String[] options = new String [20];
326    int current = 0;
327
328    if(m_Balanced) {
329      options[current++] = "-L"; 
330    }
331   
332    options[current++] = "-I"; options[current++] = "" + m_numIterations;
333    options[current++] = "-A"; options[current++] = "" + m_Alpha;
334    options[current++] = "-B"; options[current++] = "" + m_Beta;
335    options[current++] = "-H"; options[current++] = "" + m_Threshold;
336    options[current++] = "-W"; options[current++] = "" + m_defaultWeight;
337    options[current++] = "-S"; options[current++] = "" + m_Seed;
338    while (current < options.length) {
339      options[current++] = "";
340    }
341    return options;
342  }
343
344  /**
345   * Returns default capabilities of the classifier.
346   *
347   * @return      the capabilities of this classifier
348   */
349  public Capabilities getCapabilities() {
350    Capabilities result = super.getCapabilities();
351    result.disableAll();
352
353    // attributes
354    result.enable(Capability.NOMINAL_ATTRIBUTES);
355    result.enable(Capability.MISSING_VALUES);
356
357    // class
358    result.enable(Capability.BINARY_CLASS);
359    result.enable(Capability.MISSING_CLASS_VALUES);
360
361    // instances
362    result.setMinimumNumberInstances(0);
363   
364    return result;
365  }
366
367  /**
368   * Builds the classifier
369   *
370   * @param insts the data to train the classifier with
371   * @throws Exception if something goes wrong during building
372   */
373  public void buildClassifier(Instances insts) throws Exception {
374
375    // can classifier handle the data?
376    getCapabilities().testWithFail(insts);
377
378    // remove instances with missing class
379    insts = new Instances(insts);
380    insts.deleteWithMissingClass();
381   
382    // Filter data
383    m_Train = new Instances(insts);
384   
385    m_ReplaceMissingValues = new ReplaceMissingValues();
386    m_ReplaceMissingValues.setInputFormat(m_Train);
387    m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);
388    m_NominalToBinary = new NominalToBinary();
389    m_NominalToBinary.setInputFormat(m_Train);
390    m_Train = Filter.useFilter(m_Train, m_NominalToBinary);
391
392    /** Randomize training data */
393    if(m_Seed != -1) {
394      m_Train.randomize(new Random(m_Seed));
395    }
396
397    /** Make space to store weights */
398    m_predPosVector = new double[m_Train.numAttributes()];
399
400    if(m_Balanced) {
401      m_predNegVector = new double[m_Train.numAttributes()];
402    }
403
404    /** Initialize the weights to starting values **/
405    for(int i = 0; i < m_Train.numAttributes(); i++)
406      m_predPosVector[i] = m_defaultWeight;
407
408    if(m_Balanced) {
409      for(int i = 0; i < m_Train.numAttributes(); i++) {
410        m_predNegVector[i] = m_defaultWeight;
411      }
412    }
413       
414    /** Set actual prediction threshold **/
415    if(m_Threshold<0) {
416      m_actualThreshold = (double)m_Train.numAttributes()-1;
417    } else {
418      m_actualThreshold = m_Threshold;
419    }
420
421    m_Mistakes=0;
422
423    /** Compute the weight vectors **/
424    if(m_Balanced) {
425      for (int it = 0; it < m_numIterations; it++) {
426        for (int i = 0; i < m_Train.numInstances(); i++) {
427          actualUpdateClassifierBalanced(m_Train.instance(i));
428        }
429      }
430    } else {
431      for (int it = 0; it < m_numIterations; it++) {
432        for (int i = 0; i < m_Train.numInstances(); i++) {
433          actualUpdateClassifier(m_Train.instance(i));
434        }
435      }
436    }
437  }
438 
439  /**
440   * Updates the classifier with a new learning example
441   *
442   * @param instance the instance to update the classifier with
443   * @throws Exception if something goes wrong
444   */
445  public void updateClassifier(Instance instance) throws Exception {
446       
447    m_ReplaceMissingValues.input(instance);
448    m_ReplaceMissingValues.batchFinished();
449    Instance filtered = m_ReplaceMissingValues.output();
450    m_NominalToBinary.input(filtered);
451    m_NominalToBinary.batchFinished();
452    filtered = m_NominalToBinary.output();
453
454    if(m_Balanced) {
455      actualUpdateClassifierBalanced(filtered);
456    } else {
457      actualUpdateClassifier(filtered);
458    }
459  }
460 
461  /**
462   * Actual update routine for prefiltered instances
463   *
464   * @param inst the instance to update the classifier with
465   * @throws Exception if something goes wrong
466   */
467  private void actualUpdateClassifier(Instance inst) throws Exception {
468   
469    double posmultiplier;
470       
471    if (!inst.classIsMissing()) {
472      double prediction = makePrediction(inst);
473   
474      if (prediction != inst.classValue()) {
475        m_Mistakes++;
476
477        if(prediction == 0) {
478          /* false neg: promote */
479          posmultiplier=m_Alpha;
480        } else {
481          /* false pos: demote */
482          posmultiplier=m_Beta;
483        }
484        int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
485        for(int l = 0 ; l < n1 ; l++) {
486          if(inst.index(l) != classIndex && inst.valueSparse(l)==1) {
487            m_predPosVector[inst.index(l)]*=posmultiplier;
488          }
489        }
490        //Utils.normalize(m_predPosVector);
491      }
492    }
493    else {
494      System.out.println("CLASS MISSING");
495    }
496  }
497 
498  /**
499   * Actual update routine (balanced) for prefiltered instances
500   *
501   * @param inst the instance to update the classifier with
502   * @throws Exception if something goes wrong
503   */
504  private void actualUpdateClassifierBalanced(Instance inst) throws Exception {
505   
506    double posmultiplier,negmultiplier;
507
508    if (!inst.classIsMissing()) {
509      double prediction = makePredictionBalanced(inst);
510       
511      if (prediction != inst.classValue()) {
512        m_Mistakes++;
513       
514        if(prediction == 0) {
515          /* false neg: promote positive, demote negative*/
516          posmultiplier=m_Alpha;
517          negmultiplier=m_Beta;
518        } else {
519          /* false pos: demote positive, promote negative */
520          posmultiplier=m_Beta;
521          negmultiplier=m_Alpha;
522        }
523        int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
524        for(int l = 0 ; l < n1 ; l++) {
525          if(inst.index(l) != classIndex && inst.valueSparse(l)==1) {
526            m_predPosVector[inst.index(l)]*=posmultiplier;
527            m_predNegVector[inst.index(l)]*=negmultiplier;
528          }
529        }
530        //Utils.normalize(m_predPosVector);
531        //Utils.normalize(m_predNegVector);
532      }
533    }
534    else {
535      System.out.println("CLASS MISSING");
536    }
537  }
538
539  /**
540   * Outputs the prediction for the given instance.
541   *
542   * @param inst the instance for which prediction is to be computed
543   * @return the prediction
544   * @throws Exception if something goes wrong
545   */
546  public double classifyInstance(Instance inst) throws Exception {
547
548    m_ReplaceMissingValues.input(inst);
549    m_ReplaceMissingValues.batchFinished();
550    Instance filtered = m_ReplaceMissingValues.output();
551    m_NominalToBinary.input(filtered);
552    m_NominalToBinary.batchFinished();
553    filtered = m_NominalToBinary.output();
554
555    if(m_Balanced) {
556      return(makePredictionBalanced(filtered));
557    } else {
558      return(makePrediction(filtered));
559    }
560  }
561 
562  /**
563   * Compute the actual prediction for prefiltered instance
564   *
565   * @param inst the instance for which prediction is to be computed
566   * @return the prediction
567   * @throws Exception if something goes wrong
568   */
569  private double makePrediction(Instance inst) throws Exception {
570
571    double total = 0;
572
573    int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
574       
575    for(int i=0;i<n1;i++) {
576      if(inst.index(i) != classIndex && inst.valueSparse(i)==1) {
577        total+=m_predPosVector[inst.index(i)];
578      }
579    }
580   
581    if(total > m_actualThreshold) {
582      return(1);
583    } else {
584      return(0);
585    }
586  }
587 
588  /**
589   * Compute our prediction (Balanced) for prefiltered instance
590   *
591   * @param inst the instance for which prediction is to be computed
592   * @return the prediction
593   * @throws Exception if something goes wrong
594   */
595  private double makePredictionBalanced(Instance inst) throws Exception {
596    double total=0;
597       
598    int n1 = inst.numValues(); int classIndex = m_Train.classIndex();
599    for(int i=0;i<n1;i++) {
600      if(inst.index(i) != classIndex && inst.valueSparse(i)==1) {
601        total+=(m_predPosVector[inst.index(i)]-m_predNegVector[inst.index(i)]);
602      }
603    }
604     
605    if(total > m_actualThreshold) {
606      return(1);
607    } else {
608      return(0);
609    }
610  }
611
612  /**
613   * Returns textual description of the classifier.
614   *
615   * @return textual description of the classifier
616   */
617  public String toString() {
618
619    if(m_predPosVector==null)
620      return("Winnow: No model built yet.");
621           
622    String result = "Winnow\n\nAttribute weights\n\n";
623       
624    int classIndex = m_Train.classIndex();
625
626    if(!m_Balanced) {
627      for( int i = 0 ; i < m_Train.numAttributes(); i++) {
628        if(i!=classIndex)
629          result += "w" + i + " " + m_predPosVector[i] + "\n";
630      }
631    } else {
632      for( int i = 0 ; i < m_Train.numAttributes(); i++) {
633        if(i!=classIndex) {
634          result += "w" + i + " p " + m_predPosVector[i];
635          result += " n " + m_predNegVector[i];
636         
637          double wdiff=m_predPosVector[i]-m_predNegVector[i];
638         
639          result += " d " + wdiff + "\n";
640        }
641      }
642    }
643    result += "\nCumulated mistake count: " + m_Mistakes + "\n\n";
644       
645    return(result);
646  }
647     
648  /**
649   * Returns the tip text for this property
650   * @return tip text for this property suitable for
651   * displaying in the explorer/experimenter gui
652   */
653  public String balancedTipText() {
654    return "Whether to use the balanced version of the algorithm.";
655  }
656
657  /**
658   * Get the value of Balanced.
659   *
660   * @return Value of Balanced.
661   */
662  public boolean getBalanced() {
663   
664    return m_Balanced;
665  }
666 
667  /**
668   * Set the value of Balanced.
669   *
670   * @param b  Value to assign to Balanced.
671   */
672  public void setBalanced(boolean b) {
673   
674    m_Balanced = b;
675  }
676     
677  /**
678   * Returns the tip text for this property
679   * @return tip text for this property suitable for
680   * displaying in the explorer/experimenter gui
681   */
682  public String alphaTipText() {
683    return "Promotion coefficient alpha.";
684  }
685 
686  /**
687   * Get the value of Alpha.
688   *
689   * @return Value of Alpha.
690   */
691  public double getAlpha() {
692   
693    return(m_Alpha);
694  }
695 
696  /**
697   * Set the value of Alpha.
698   *
699   * @param a  Value to assign to Alpha.
700   */
701  public void setAlpha(double a) {
702   
703    m_Alpha = a;
704  }
705     
706  /**
707   * Returns the tip text for this property
708   * @return tip text for this property suitable for
709   * displaying in the explorer/experimenter gui
710   */
711  public String betaTipText() {
712    return "Demotion coefficient beta.";
713  }
714 
715  /**
716   * Get the value of Beta.
717   *
718   * @return Value of Beta.
719   */
720  public double getBeta() {
721   
722    return(m_Beta);
723  }
724 
725  /**
726   * Set the value of Beta.
727   *
728   * @param b  Value to assign to Beta.
729   */
730  public void setBeta(double b) {
731   
732    m_Beta = b;
733  }
734     
735  /**
736   * Returns the tip text for this property
737   * @return tip text for this property suitable for
738   * displaying in the explorer/experimenter gui
739   */
740  public String thresholdTipText() {
741    return "Prediction threshold (-1 means: set to number of attributes).";
742  }
743 
744  /**
745   * Get the value of Threshold.
746   *
747   * @return Value of Threshold.
748   */
749  public double getThreshold() {
750   
751    return m_Threshold;
752  }
753 
754  /**
755   * Set the value of Threshold.
756   *
757   * @param t  Value to assign to Threshold.
758   */
759  public void setThreshold(double t) {
760   
761    m_Threshold = t;
762  }
763     
764  /**
765   * Returns the tip text for this property
766   * @return tip text for this property suitable for
767   * displaying in the explorer/experimenter gui
768   */
769  public String defaultWeightTipText() {
770    return "Initial value of weights/coefficients.";
771  }
772 
773  /**
774   * Get the value of defaultWeight.
775   *
776   * @return Value of defaultWeight.
777   */
778  public double getDefaultWeight() {
779   
780    return m_defaultWeight;
781  }
782 
783  /**
784   * Set the value of defaultWeight.
785   *
786   * @param w  Value to assign to defaultWeight.
787   */
788  public void setDefaultWeight(double w) {
789   
790    m_defaultWeight = w;
791  }
792     
793  /**
794   * Returns the tip text for this property
795   * @return tip text for this property suitable for
796   * displaying in the explorer/experimenter gui
797   */
798  public String numIterationsTipText() {
799    return "The number of iterations to be performed.";
800  }
801 
802  /**
803   * Get the value of numIterations.
804   *
805   * @return Value of numIterations.
806   */
807  public int getNumIterations() {
808   
809    return m_numIterations;
810  }
811 
812  /**
813   * Set the value of numIterations.
814   *
815   * @param v  Value to assign to numIterations.
816   */
817  public void setNumIterations(int v) {
818   
819    m_numIterations = v;
820  }
821     
822  /**
823   * Returns the tip text for this property
824   * @return tip text for this property suitable for
825   * displaying in the explorer/experimenter gui
826   */
827  public String seedTipText() {
828    return "Random number seed used for data shuffling (-1 means no "
829      + "randomization).";
830  }
831
832  /**
833   * Get the value of Seed.
834   *
835   * @return Value of Seed.
836   */
837  public int getSeed() {
838   
839    return m_Seed;
840  }
841 
842  /**
843   * Set the value of Seed.
844   *
845   * @param v  Value to assign to Seed.
846   */
847  public void setSeed(int v) {
848   
849    m_Seed = v;
850  }
851 
852  /**
853   * Returns the revision string.
854   *
855   * @return            the revision
856   */
857  public String getRevision() {
858    return RevisionUtils.extract("$Revision: 5928 $");
859  }
860 
861  /**
862   * Main method.
863   *
864   * @param argv the commandline options
865   */
866  public static void main(String[] argv) {
867    runClassifier(new Winnow(), argv);
868  }
869}
Note: See TracBrowser for help on using the repository browser.