1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Winnow.java |
---|
19 | * Copyright (C) 2002 J. Lindgren |
---|
20 | * |
---|
21 | */ |
---|
22 | package weka.classifiers.functions; |
---|
23 | |
---|
24 | import weka.classifiers.Classifier; |
---|
25 | import weka.classifiers.AbstractClassifier; |
---|
26 | import weka.classifiers.UpdateableClassifier; |
---|
27 | import weka.core.Capabilities; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.TechnicalInformation; |
---|
33 | import weka.core.TechnicalInformationHandler; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.core.Capabilities.Capability; |
---|
36 | import weka.core.TechnicalInformation.Field; |
---|
37 | import weka.core.TechnicalInformation.Type; |
---|
38 | import weka.filters.Filter; |
---|
39 | import weka.filters.unsupervised.attribute.NominalToBinary; |
---|
40 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
41 | |
---|
42 | import java.util.Enumeration; |
---|
43 | import java.util.Random; |
---|
44 | import java.util.Vector; |
---|
45 | |
---|
46 | /** |
---|
47 | <!-- globalinfo-start --> |
---|
48 | * Implements Winnow and Balanced Winnow algorithms by Littlestone.<br/> |
---|
49 | * <br/> |
---|
50 | * For more information, see<br/> |
---|
51 | * <br/> |
---|
52 | * N. Littlestone (1988). Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm. Machine Learning. 2:285-318.<br/> |
---|
53 | * <br/> |
---|
54 | * N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. University of California, Santa Cruz.<br/> |
---|
55 | * <br/> |
---|
56 | * Does classification for problems with nominal attributes (which it converts into binary attributes). |
---|
57 | * <p/> |
---|
58 | <!-- globalinfo-end --> |
---|
59 | * |
---|
60 | <!-- technical-bibtex-start --> |
---|
61 | * BibTeX: |
---|
62 | * <pre> |
---|
63 | * @article{Littlestone1988, |
---|
64 | * author = {N. Littlestone}, |
---|
65 | * journal = {Machine Learning}, |
---|
66 | * pages = {285-318}, |
---|
67 | * title = {Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm}, |
---|
68 | * volume = {2}, |
---|
69 | * year = {1988} |
---|
70 | * } |
---|
71 | * |
---|
72 | * @techreport{Littlestone1989, |
---|
73 | * address = {University of California, Santa Cruz}, |
---|
74 | * author = {N. Littlestone}, |
---|
75 | * institution = {University of California}, |
---|
76 | * note = {Technical Report UCSC-CRL-89-11}, |
---|
77 | * title = {Mistake bounds and logarithmic linear-threshold learning algorithms}, |
---|
78 | * year = {1989} |
---|
79 | * } |
---|
80 | * </pre> |
---|
81 | * <p/> |
---|
82 | <!-- technical-bibtex-end --> |
---|
83 | * |
---|
84 | <!-- options-start --> |
---|
85 | * Valid options are: <p/> |
---|
86 | * |
---|
87 | * <pre> -L |
---|
88 | * Use the baLanced version |
---|
89 | * (default false)</pre> |
---|
90 | * |
---|
91 | * <pre> -I <int> |
---|
92 | * The number of iterations to be performed. |
---|
93 | * (default 1)</pre> |
---|
94 | * |
---|
95 | * <pre> -A <double> |
---|
96 | * Promotion coefficient alpha. |
---|
97 | * (default 2.0)</pre> |
---|
98 | * |
---|
99 | * <pre> -B <double> |
---|
100 | * Demotion coefficient beta. |
---|
101 | * (default 0.5)</pre> |
---|
102 | * |
---|
103 | * <pre> -H <double> |
---|
104 | * Prediction threshold. |
---|
105 | * (default -1.0 == number of attributes)</pre> |
---|
106 | * |
---|
107 | * <pre> -W <double> |
---|
108 | * Starting weights. |
---|
109 | * (default 2.0)</pre> |
---|
110 | * |
---|
111 | * <pre> -S <int> |
---|
112 | * Default random seed. |
---|
113 | * (default 1)</pre> |
---|
114 | * |
---|
115 | <!-- options-end --> |
---|
116 | * |
---|
117 | * @author J. Lindgren (jtlindgr at cs.helsinki.fi) |
---|
118 | * @version $Revision: 5928 $ |
---|
119 | */ |
---|
120 | public class Winnow |
---|
121 | extends AbstractClassifier |
---|
122 | implements UpdateableClassifier, TechnicalInformationHandler { |
---|
123 | |
---|
124 | /** for serialization */ |
---|
125 | static final long serialVersionUID = 3543770107994321324L; |
---|
126 | |
---|
127 | /** Use the balanced variant? **/ |
---|
128 | protected boolean m_Balanced; |
---|
129 | |
---|
130 | /** The number of iterations **/ |
---|
131 | protected int m_numIterations = 1; |
---|
132 | |
---|
133 | /** The promotion coefficient **/ |
---|
134 | protected double m_Alpha = 2.0; |
---|
135 | |
---|
136 | /** The demotion coefficient **/ |
---|
137 | protected double m_Beta = 0.5; |
---|
138 | |
---|
139 | /** Prediction threshold, <0 == numAttributes **/ |
---|
140 | protected double m_Threshold = -1.0; |
---|
141 | |
---|
142 | /** Random seed used for shuffling the dataset, -1 == disable **/ |
---|
143 | protected int m_Seed = 1; |
---|
144 | |
---|
145 | /** Accumulated mistake count (for statistics) **/ |
---|
146 | protected int m_Mistakes; |
---|
147 | |
---|
148 | /** Starting weights for the prediction vector(s) **/ |
---|
149 | protected double m_defaultWeight = 2.0; |
---|
150 | |
---|
151 | /** The weight vector for prediction (pos) */ |
---|
152 | private double[] m_predPosVector = null; |
---|
153 | |
---|
154 | /** The weight vector for prediction (neg) */ |
---|
155 | private double[] m_predNegVector = null; |
---|
156 | |
---|
157 | /** The true threshold used for prediction **/ |
---|
158 | private double m_actualThreshold; |
---|
159 | |
---|
160 | /** The training instances */ |
---|
161 | private Instances m_Train = null; |
---|
162 | |
---|
163 | /** The filter used to make attributes numeric. */ |
---|
164 | private NominalToBinary m_NominalToBinary; |
---|
165 | |
---|
166 | /** The filter used to get rid of missing values. */ |
---|
167 | private ReplaceMissingValues m_ReplaceMissingValues; |
---|
168 | |
---|
169 | /** |
---|
170 | * Returns a string describing classifier |
---|
171 | * @return a description suitable for |
---|
172 | * displaying in the explorer/experimenter gui |
---|
173 | */ |
---|
174 | public String globalInfo() { |
---|
175 | |
---|
176 | return "Implements Winnow and Balanced Winnow algorithms by " |
---|
177 | + "Littlestone.\n\n" |
---|
178 | + "For more information, see\n\n" |
---|
179 | + getTechnicalInformation().toString() |
---|
180 | + "\n\n" |
---|
181 | + "Does classification for problems with nominal attributes " |
---|
182 | + "(which it converts into binary attributes)."; |
---|
183 | } |
---|
184 | |
---|
185 | /** |
---|
186 | * Returns an instance of a TechnicalInformation object, containing |
---|
187 | * detailed information about the technical background of this class, |
---|
188 | * e.g., paper reference or book this class is based on. |
---|
189 | * |
---|
190 | * @return the technical information about this class |
---|
191 | */ |
---|
192 | public TechnicalInformation getTechnicalInformation() { |
---|
193 | TechnicalInformation result; |
---|
194 | TechnicalInformation additional; |
---|
195 | |
---|
196 | result = new TechnicalInformation(Type.ARTICLE); |
---|
197 | result.setValue(Field.AUTHOR, "N. Littlestone"); |
---|
198 | result.setValue(Field.YEAR, "1988"); |
---|
199 | result.setValue(Field.TITLE, "Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm"); |
---|
200 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
201 | result.setValue(Field.VOLUME, "2"); |
---|
202 | result.setValue(Field.PAGES, "285-318"); |
---|
203 | |
---|
204 | additional = result.add(Type.TECHREPORT); |
---|
205 | additional.setValue(Field.AUTHOR, "N. Littlestone"); |
---|
206 | additional.setValue(Field.YEAR, "1989"); |
---|
207 | additional.setValue(Field.TITLE, "Mistake bounds and logarithmic linear-threshold learning algorithms"); |
---|
208 | additional.setValue(Field.INSTITUTION, "University of California"); |
---|
209 | additional.setValue(Field.ADDRESS, "University of California, Santa Cruz"); |
---|
210 | additional.setValue(Field.NOTE, "Technical Report UCSC-CRL-89-11"); |
---|
211 | |
---|
212 | return result; |
---|
213 | } |
---|
214 | |
---|
215 | /** |
---|
216 | * Returns an enumeration describing the available options |
---|
217 | * |
---|
218 | * @return an enumeration of all the available options |
---|
219 | */ |
---|
220 | public Enumeration listOptions() { |
---|
221 | |
---|
222 | Vector newVector = new Vector(7); |
---|
223 | |
---|
224 | newVector.addElement(new Option("\tUse the baLanced version\n" |
---|
225 | + "\t(default false)", |
---|
226 | "L", 0, "-L")); |
---|
227 | newVector.addElement(new Option("\tThe number of iterations to be performed.\n" |
---|
228 | + "\t(default 1)", |
---|
229 | "I", 1, "-I <int>")); |
---|
230 | newVector.addElement(new Option("\tPromotion coefficient alpha.\n" |
---|
231 | + "\t(default 2.0)", |
---|
232 | "A", 1, "-A <double>")); |
---|
233 | newVector.addElement(new Option("\tDemotion coefficient beta.\n" |
---|
234 | + "\t(default 0.5)", |
---|
235 | "B", 1, "-B <double>")); |
---|
236 | newVector.addElement(new Option("\tPrediction threshold.\n" |
---|
237 | + "\t(default -1.0 == number of attributes)", |
---|
238 | "H", 1, "-H <double>")); |
---|
239 | newVector.addElement(new Option("\tStarting weights.\n" |
---|
240 | + "\t(default 2.0)", |
---|
241 | "W", 1, "-W <double>")); |
---|
242 | newVector.addElement(new Option("\tDefault random seed.\n" |
---|
243 | + "\t(default 1)", |
---|
244 | "S", 1, "-S <int>")); |
---|
245 | |
---|
246 | return newVector.elements(); |
---|
247 | } |
---|
248 | |
---|
249 | /** |
---|
250 | * Parses a given list of options.<p/> |
---|
251 | * |
---|
252 | <!-- options-start --> |
---|
253 | * Valid options are: <p/> |
---|
254 | * |
---|
255 | * <pre> -L |
---|
256 | * Use the baLanced version |
---|
257 | * (default false)</pre> |
---|
258 | * |
---|
259 | * <pre> -I <int> |
---|
260 | * The number of iterations to be performed. |
---|
261 | * (default 1)</pre> |
---|
262 | * |
---|
263 | * <pre> -A <double> |
---|
264 | * Promotion coefficient alpha. |
---|
265 | * (default 2.0)</pre> |
---|
266 | * |
---|
267 | * <pre> -B <double> |
---|
268 | * Demotion coefficient beta. |
---|
269 | * (default 0.5)</pre> |
---|
270 | * |
---|
271 | * <pre> -H <double> |
---|
272 | * Prediction threshold. |
---|
273 | * (default -1.0 == number of attributes)</pre> |
---|
274 | * |
---|
275 | * <pre> -W <double> |
---|
276 | * Starting weights. |
---|
277 | * (default 2.0)</pre> |
---|
278 | * |
---|
279 | * <pre> -S <int> |
---|
280 | * Default random seed. |
---|
281 | * (default 1)</pre> |
---|
282 | * |
---|
283 | <!-- options-end --> |
---|
284 | * |
---|
285 | * @param options the list of options as an array of strings |
---|
286 | * @throws Exception if an option is not supported |
---|
287 | */ |
---|
288 | public void setOptions(String[] options) throws Exception { |
---|
289 | |
---|
290 | m_Balanced = Utils.getFlag('L', options); |
---|
291 | |
---|
292 | String iterationsString = Utils.getOption('I', options); |
---|
293 | if (iterationsString.length() != 0) { |
---|
294 | m_numIterations = Integer.parseInt(iterationsString); |
---|
295 | } |
---|
296 | String alphaString = Utils.getOption('A', options); |
---|
297 | if (alphaString.length() != 0) { |
---|
298 | m_Alpha = (new Double(alphaString)).doubleValue(); |
---|
299 | } |
---|
300 | String betaString = Utils.getOption('B', options); |
---|
301 | if (betaString.length() != 0) { |
---|
302 | m_Beta = (new Double(betaString)).doubleValue(); |
---|
303 | } |
---|
304 | String tString = Utils.getOption('H', options); |
---|
305 | if (tString.length() != 0) { |
---|
306 | m_Threshold = (new Double(tString)).doubleValue(); |
---|
307 | } |
---|
308 | String wString = Utils.getOption('W', options); |
---|
309 | if (wString.length() != 0) { |
---|
310 | m_defaultWeight = (new Double(wString)).doubleValue(); |
---|
311 | } |
---|
312 | String rString = Utils.getOption('S', options); |
---|
313 | if (rString.length() != 0) { |
---|
314 | m_Seed = Integer.parseInt(rString); |
---|
315 | } |
---|
316 | } |
---|
317 | |
---|
318 | /** |
---|
319 | * Gets the current settings of the classifier. |
---|
320 | * |
---|
321 | * @return an array of strings suitable for passing to setOptions |
---|
322 | */ |
---|
323 | public String[] getOptions() { |
---|
324 | |
---|
325 | String[] options = new String [20]; |
---|
326 | int current = 0; |
---|
327 | |
---|
328 | if(m_Balanced) { |
---|
329 | options[current++] = "-L"; |
---|
330 | } |
---|
331 | |
---|
332 | options[current++] = "-I"; options[current++] = "" + m_numIterations; |
---|
333 | options[current++] = "-A"; options[current++] = "" + m_Alpha; |
---|
334 | options[current++] = "-B"; options[current++] = "" + m_Beta; |
---|
335 | options[current++] = "-H"; options[current++] = "" + m_Threshold; |
---|
336 | options[current++] = "-W"; options[current++] = "" + m_defaultWeight; |
---|
337 | options[current++] = "-S"; options[current++] = "" + m_Seed; |
---|
338 | while (current < options.length) { |
---|
339 | options[current++] = ""; |
---|
340 | } |
---|
341 | return options; |
---|
342 | } |
---|
343 | |
---|
344 | /** |
---|
345 | * Returns default capabilities of the classifier. |
---|
346 | * |
---|
347 | * @return the capabilities of this classifier |
---|
348 | */ |
---|
349 | public Capabilities getCapabilities() { |
---|
350 | Capabilities result = super.getCapabilities(); |
---|
351 | result.disableAll(); |
---|
352 | |
---|
353 | // attributes |
---|
354 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
355 | result.enable(Capability.MISSING_VALUES); |
---|
356 | |
---|
357 | // class |
---|
358 | result.enable(Capability.BINARY_CLASS); |
---|
359 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
360 | |
---|
361 | // instances |
---|
362 | result.setMinimumNumberInstances(0); |
---|
363 | |
---|
364 | return result; |
---|
365 | } |
---|
366 | |
---|
367 | /** |
---|
368 | * Builds the classifier |
---|
369 | * |
---|
370 | * @param insts the data to train the classifier with |
---|
371 | * @throws Exception if something goes wrong during building |
---|
372 | */ |
---|
373 | public void buildClassifier(Instances insts) throws Exception { |
---|
374 | |
---|
375 | // can classifier handle the data? |
---|
376 | getCapabilities().testWithFail(insts); |
---|
377 | |
---|
378 | // remove instances with missing class |
---|
379 | insts = new Instances(insts); |
---|
380 | insts.deleteWithMissingClass(); |
---|
381 | |
---|
382 | // Filter data |
---|
383 | m_Train = new Instances(insts); |
---|
384 | |
---|
385 | m_ReplaceMissingValues = new ReplaceMissingValues(); |
---|
386 | m_ReplaceMissingValues.setInputFormat(m_Train); |
---|
387 | m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues); |
---|
388 | m_NominalToBinary = new NominalToBinary(); |
---|
389 | m_NominalToBinary.setInputFormat(m_Train); |
---|
390 | m_Train = Filter.useFilter(m_Train, m_NominalToBinary); |
---|
391 | |
---|
392 | /** Randomize training data */ |
---|
393 | if(m_Seed != -1) { |
---|
394 | m_Train.randomize(new Random(m_Seed)); |
---|
395 | } |
---|
396 | |
---|
397 | /** Make space to store weights */ |
---|
398 | m_predPosVector = new double[m_Train.numAttributes()]; |
---|
399 | |
---|
400 | if(m_Balanced) { |
---|
401 | m_predNegVector = new double[m_Train.numAttributes()]; |
---|
402 | } |
---|
403 | |
---|
404 | /** Initialize the weights to starting values **/ |
---|
405 | for(int i = 0; i < m_Train.numAttributes(); i++) |
---|
406 | m_predPosVector[i] = m_defaultWeight; |
---|
407 | |
---|
408 | if(m_Balanced) { |
---|
409 | for(int i = 0; i < m_Train.numAttributes(); i++) { |
---|
410 | m_predNegVector[i] = m_defaultWeight; |
---|
411 | } |
---|
412 | } |
---|
413 | |
---|
414 | /** Set actual prediction threshold **/ |
---|
415 | if(m_Threshold<0) { |
---|
416 | m_actualThreshold = (double)m_Train.numAttributes()-1; |
---|
417 | } else { |
---|
418 | m_actualThreshold = m_Threshold; |
---|
419 | } |
---|
420 | |
---|
421 | m_Mistakes=0; |
---|
422 | |
---|
423 | /** Compute the weight vectors **/ |
---|
424 | if(m_Balanced) { |
---|
425 | for (int it = 0; it < m_numIterations; it++) { |
---|
426 | for (int i = 0; i < m_Train.numInstances(); i++) { |
---|
427 | actualUpdateClassifierBalanced(m_Train.instance(i)); |
---|
428 | } |
---|
429 | } |
---|
430 | } else { |
---|
431 | for (int it = 0; it < m_numIterations; it++) { |
---|
432 | for (int i = 0; i < m_Train.numInstances(); i++) { |
---|
433 | actualUpdateClassifier(m_Train.instance(i)); |
---|
434 | } |
---|
435 | } |
---|
436 | } |
---|
437 | } |
---|
438 | |
---|
439 | /** |
---|
440 | * Updates the classifier with a new learning example |
---|
441 | * |
---|
442 | * @param instance the instance to update the classifier with |
---|
443 | * @throws Exception if something goes wrong |
---|
444 | */ |
---|
445 | public void updateClassifier(Instance instance) throws Exception { |
---|
446 | |
---|
447 | m_ReplaceMissingValues.input(instance); |
---|
448 | m_ReplaceMissingValues.batchFinished(); |
---|
449 | Instance filtered = m_ReplaceMissingValues.output(); |
---|
450 | m_NominalToBinary.input(filtered); |
---|
451 | m_NominalToBinary.batchFinished(); |
---|
452 | filtered = m_NominalToBinary.output(); |
---|
453 | |
---|
454 | if(m_Balanced) { |
---|
455 | actualUpdateClassifierBalanced(filtered); |
---|
456 | } else { |
---|
457 | actualUpdateClassifier(filtered); |
---|
458 | } |
---|
459 | } |
---|
460 | |
---|
461 | /** |
---|
462 | * Actual update routine for prefiltered instances |
---|
463 | * |
---|
464 | * @param inst the instance to update the classifier with |
---|
465 | * @throws Exception if something goes wrong |
---|
466 | */ |
---|
467 | private void actualUpdateClassifier(Instance inst) throws Exception { |
---|
468 | |
---|
469 | double posmultiplier; |
---|
470 | |
---|
471 | if (!inst.classIsMissing()) { |
---|
472 | double prediction = makePrediction(inst); |
---|
473 | |
---|
474 | if (prediction != inst.classValue()) { |
---|
475 | m_Mistakes++; |
---|
476 | |
---|
477 | if(prediction == 0) { |
---|
478 | /* false neg: promote */ |
---|
479 | posmultiplier=m_Alpha; |
---|
480 | } else { |
---|
481 | /* false pos: demote */ |
---|
482 | posmultiplier=m_Beta; |
---|
483 | } |
---|
484 | int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); |
---|
485 | for(int l = 0 ; l < n1 ; l++) { |
---|
486 | if(inst.index(l) != classIndex && inst.valueSparse(l)==1) { |
---|
487 | m_predPosVector[inst.index(l)]*=posmultiplier; |
---|
488 | } |
---|
489 | } |
---|
490 | //Utils.normalize(m_predPosVector); |
---|
491 | } |
---|
492 | } |
---|
493 | else { |
---|
494 | System.out.println("CLASS MISSING"); |
---|
495 | } |
---|
496 | } |
---|
497 | |
---|
498 | /** |
---|
499 | * Actual update routine (balanced) for prefiltered instances |
---|
500 | * |
---|
501 | * @param inst the instance to update the classifier with |
---|
502 | * @throws Exception if something goes wrong |
---|
503 | */ |
---|
504 | private void actualUpdateClassifierBalanced(Instance inst) throws Exception { |
---|
505 | |
---|
506 | double posmultiplier,negmultiplier; |
---|
507 | |
---|
508 | if (!inst.classIsMissing()) { |
---|
509 | double prediction = makePredictionBalanced(inst); |
---|
510 | |
---|
511 | if (prediction != inst.classValue()) { |
---|
512 | m_Mistakes++; |
---|
513 | |
---|
514 | if(prediction == 0) { |
---|
515 | /* false neg: promote positive, demote negative*/ |
---|
516 | posmultiplier=m_Alpha; |
---|
517 | negmultiplier=m_Beta; |
---|
518 | } else { |
---|
519 | /* false pos: demote positive, promote negative */ |
---|
520 | posmultiplier=m_Beta; |
---|
521 | negmultiplier=m_Alpha; |
---|
522 | } |
---|
523 | int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); |
---|
524 | for(int l = 0 ; l < n1 ; l++) { |
---|
525 | if(inst.index(l) != classIndex && inst.valueSparse(l)==1) { |
---|
526 | m_predPosVector[inst.index(l)]*=posmultiplier; |
---|
527 | m_predNegVector[inst.index(l)]*=negmultiplier; |
---|
528 | } |
---|
529 | } |
---|
530 | //Utils.normalize(m_predPosVector); |
---|
531 | //Utils.normalize(m_predNegVector); |
---|
532 | } |
---|
533 | } |
---|
534 | else { |
---|
535 | System.out.println("CLASS MISSING"); |
---|
536 | } |
---|
537 | } |
---|
538 | |
---|
539 | /** |
---|
540 | * Outputs the prediction for the given instance. |
---|
541 | * |
---|
542 | * @param inst the instance for which prediction is to be computed |
---|
543 | * @return the prediction |
---|
544 | * @throws Exception if something goes wrong |
---|
545 | */ |
---|
546 | public double classifyInstance(Instance inst) throws Exception { |
---|
547 | |
---|
548 | m_ReplaceMissingValues.input(inst); |
---|
549 | m_ReplaceMissingValues.batchFinished(); |
---|
550 | Instance filtered = m_ReplaceMissingValues.output(); |
---|
551 | m_NominalToBinary.input(filtered); |
---|
552 | m_NominalToBinary.batchFinished(); |
---|
553 | filtered = m_NominalToBinary.output(); |
---|
554 | |
---|
555 | if(m_Balanced) { |
---|
556 | return(makePredictionBalanced(filtered)); |
---|
557 | } else { |
---|
558 | return(makePrediction(filtered)); |
---|
559 | } |
---|
560 | } |
---|
561 | |
---|
562 | /** |
---|
563 | * Compute the actual prediction for prefiltered instance |
---|
564 | * |
---|
565 | * @param inst the instance for which prediction is to be computed |
---|
566 | * @return the prediction |
---|
567 | * @throws Exception if something goes wrong |
---|
568 | */ |
---|
569 | private double makePrediction(Instance inst) throws Exception { |
---|
570 | |
---|
571 | double total = 0; |
---|
572 | |
---|
573 | int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); |
---|
574 | |
---|
575 | for(int i=0;i<n1;i++) { |
---|
576 | if(inst.index(i) != classIndex && inst.valueSparse(i)==1) { |
---|
577 | total+=m_predPosVector[inst.index(i)]; |
---|
578 | } |
---|
579 | } |
---|
580 | |
---|
581 | if(total > m_actualThreshold) { |
---|
582 | return(1); |
---|
583 | } else { |
---|
584 | return(0); |
---|
585 | } |
---|
586 | } |
---|
587 | |
---|
588 | /** |
---|
589 | * Compute our prediction (Balanced) for prefiltered instance |
---|
590 | * |
---|
591 | * @param inst the instance for which prediction is to be computed |
---|
592 | * @return the prediction |
---|
593 | * @throws Exception if something goes wrong |
---|
594 | */ |
---|
595 | private double makePredictionBalanced(Instance inst) throws Exception { |
---|
596 | double total=0; |
---|
597 | |
---|
598 | int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); |
---|
599 | for(int i=0;i<n1;i++) { |
---|
600 | if(inst.index(i) != classIndex && inst.valueSparse(i)==1) { |
---|
601 | total+=(m_predPosVector[inst.index(i)]-m_predNegVector[inst.index(i)]); |
---|
602 | } |
---|
603 | } |
---|
604 | |
---|
605 | if(total > m_actualThreshold) { |
---|
606 | return(1); |
---|
607 | } else { |
---|
608 | return(0); |
---|
609 | } |
---|
610 | } |
---|
611 | |
---|
612 | /** |
---|
613 | * Returns textual description of the classifier. |
---|
614 | * |
---|
615 | * @return textual description of the classifier |
---|
616 | */ |
---|
617 | public String toString() { |
---|
618 | |
---|
619 | if(m_predPosVector==null) |
---|
620 | return("Winnow: No model built yet."); |
---|
621 | |
---|
622 | String result = "Winnow\n\nAttribute weights\n\n"; |
---|
623 | |
---|
624 | int classIndex = m_Train.classIndex(); |
---|
625 | |
---|
626 | if(!m_Balanced) { |
---|
627 | for( int i = 0 ; i < m_Train.numAttributes(); i++) { |
---|
628 | if(i!=classIndex) |
---|
629 | result += "w" + i + " " + m_predPosVector[i] + "\n"; |
---|
630 | } |
---|
631 | } else { |
---|
632 | for( int i = 0 ; i < m_Train.numAttributes(); i++) { |
---|
633 | if(i!=classIndex) { |
---|
634 | result += "w" + i + " p " + m_predPosVector[i]; |
---|
635 | result += " n " + m_predNegVector[i]; |
---|
636 | |
---|
637 | double wdiff=m_predPosVector[i]-m_predNegVector[i]; |
---|
638 | |
---|
639 | result += " d " + wdiff + "\n"; |
---|
640 | } |
---|
641 | } |
---|
642 | } |
---|
643 | result += "\nCumulated mistake count: " + m_Mistakes + "\n\n"; |
---|
644 | |
---|
645 | return(result); |
---|
646 | } |
---|
647 | |
---|
648 | /** |
---|
649 | * Returns the tip text for this property |
---|
650 | * @return tip text for this property suitable for |
---|
651 | * displaying in the explorer/experimenter gui |
---|
652 | */ |
---|
653 | public String balancedTipText() { |
---|
654 | return "Whether to use the balanced version of the algorithm."; |
---|
655 | } |
---|
656 | |
---|
657 | /** |
---|
658 | * Get the value of Balanced. |
---|
659 | * |
---|
660 | * @return Value of Balanced. |
---|
661 | */ |
---|
662 | public boolean getBalanced() { |
---|
663 | |
---|
664 | return m_Balanced; |
---|
665 | } |
---|
666 | |
---|
667 | /** |
---|
668 | * Set the value of Balanced. |
---|
669 | * |
---|
670 | * @param b Value to assign to Balanced. |
---|
671 | */ |
---|
672 | public void setBalanced(boolean b) { |
---|
673 | |
---|
674 | m_Balanced = b; |
---|
675 | } |
---|
676 | |
---|
677 | /** |
---|
678 | * Returns the tip text for this property |
---|
679 | * @return tip text for this property suitable for |
---|
680 | * displaying in the explorer/experimenter gui |
---|
681 | */ |
---|
682 | public String alphaTipText() { |
---|
683 | return "Promotion coefficient alpha."; |
---|
684 | } |
---|
685 | |
---|
686 | /** |
---|
687 | * Get the value of Alpha. |
---|
688 | * |
---|
689 | * @return Value of Alpha. |
---|
690 | */ |
---|
691 | public double getAlpha() { |
---|
692 | |
---|
693 | return(m_Alpha); |
---|
694 | } |
---|
695 | |
---|
696 | /** |
---|
697 | * Set the value of Alpha. |
---|
698 | * |
---|
699 | * @param a Value to assign to Alpha. |
---|
700 | */ |
---|
701 | public void setAlpha(double a) { |
---|
702 | |
---|
703 | m_Alpha = a; |
---|
704 | } |
---|
705 | |
---|
706 | /** |
---|
707 | * Returns the tip text for this property |
---|
708 | * @return tip text for this property suitable for |
---|
709 | * displaying in the explorer/experimenter gui |
---|
710 | */ |
---|
711 | public String betaTipText() { |
---|
712 | return "Demotion coefficient beta."; |
---|
713 | } |
---|
714 | |
---|
715 | /** |
---|
716 | * Get the value of Beta. |
---|
717 | * |
---|
718 | * @return Value of Beta. |
---|
719 | */ |
---|
720 | public double getBeta() { |
---|
721 | |
---|
722 | return(m_Beta); |
---|
723 | } |
---|
724 | |
---|
725 | /** |
---|
726 | * Set the value of Beta. |
---|
727 | * |
---|
728 | * @param b Value to assign to Beta. |
---|
729 | */ |
---|
730 | public void setBeta(double b) { |
---|
731 | |
---|
732 | m_Beta = b; |
---|
733 | } |
---|
734 | |
---|
735 | /** |
---|
736 | * Returns the tip text for this property |
---|
737 | * @return tip text for this property suitable for |
---|
738 | * displaying in the explorer/experimenter gui |
---|
739 | */ |
---|
740 | public String thresholdTipText() { |
---|
741 | return "Prediction threshold (-1 means: set to number of attributes)."; |
---|
742 | } |
---|
743 | |
---|
744 | /** |
---|
745 | * Get the value of Threshold. |
---|
746 | * |
---|
747 | * @return Value of Threshold. |
---|
748 | */ |
---|
749 | public double getThreshold() { |
---|
750 | |
---|
751 | return m_Threshold; |
---|
752 | } |
---|
753 | |
---|
754 | /** |
---|
755 | * Set the value of Threshold. |
---|
756 | * |
---|
757 | * @param t Value to assign to Threshold. |
---|
758 | */ |
---|
759 | public void setThreshold(double t) { |
---|
760 | |
---|
761 | m_Threshold = t; |
---|
762 | } |
---|
763 | |
---|
764 | /** |
---|
765 | * Returns the tip text for this property |
---|
766 | * @return tip text for this property suitable for |
---|
767 | * displaying in the explorer/experimenter gui |
---|
768 | */ |
---|
769 | public String defaultWeightTipText() { |
---|
770 | return "Initial value of weights/coefficients."; |
---|
771 | } |
---|
772 | |
---|
773 | /** |
---|
774 | * Get the value of defaultWeight. |
---|
775 | * |
---|
776 | * @return Value of defaultWeight. |
---|
777 | */ |
---|
778 | public double getDefaultWeight() { |
---|
779 | |
---|
780 | return m_defaultWeight; |
---|
781 | } |
---|
782 | |
---|
783 | /** |
---|
784 | * Set the value of defaultWeight. |
---|
785 | * |
---|
786 | * @param w Value to assign to defaultWeight. |
---|
787 | */ |
---|
788 | public void setDefaultWeight(double w) { |
---|
789 | |
---|
790 | m_defaultWeight = w; |
---|
791 | } |
---|
792 | |
---|
793 | /** |
---|
794 | * Returns the tip text for this property |
---|
795 | * @return tip text for this property suitable for |
---|
796 | * displaying in the explorer/experimenter gui |
---|
797 | */ |
---|
798 | public String numIterationsTipText() { |
---|
799 | return "The number of iterations to be performed."; |
---|
800 | } |
---|
801 | |
---|
802 | /** |
---|
803 | * Get the value of numIterations. |
---|
804 | * |
---|
805 | * @return Value of numIterations. |
---|
806 | */ |
---|
807 | public int getNumIterations() { |
---|
808 | |
---|
809 | return m_numIterations; |
---|
810 | } |
---|
811 | |
---|
812 | /** |
---|
813 | * Set the value of numIterations. |
---|
814 | * |
---|
815 | * @param v Value to assign to numIterations. |
---|
816 | */ |
---|
817 | public void setNumIterations(int v) { |
---|
818 | |
---|
819 | m_numIterations = v; |
---|
820 | } |
---|
821 | |
---|
822 | /** |
---|
823 | * Returns the tip text for this property |
---|
824 | * @return tip text for this property suitable for |
---|
825 | * displaying in the explorer/experimenter gui |
---|
826 | */ |
---|
827 | public String seedTipText() { |
---|
828 | return "Random number seed used for data shuffling (-1 means no " |
---|
829 | + "randomization)."; |
---|
830 | } |
---|
831 | |
---|
832 | /** |
---|
833 | * Get the value of Seed. |
---|
834 | * |
---|
835 | * @return Value of Seed. |
---|
836 | */ |
---|
837 | public int getSeed() { |
---|
838 | |
---|
839 | return m_Seed; |
---|
840 | } |
---|
841 | |
---|
842 | /** |
---|
843 | * Set the value of Seed. |
---|
844 | * |
---|
845 | * @param v Value to assign to Seed. |
---|
846 | */ |
---|
847 | public void setSeed(int v) { |
---|
848 | |
---|
849 | m_Seed = v; |
---|
850 | } |
---|
851 | |
---|
852 | /** |
---|
853 | * Returns the revision string. |
---|
854 | * |
---|
855 | * @return the revision |
---|
856 | */ |
---|
857 | public String getRevision() { |
---|
858 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
859 | } |
---|
860 | |
---|
861 | /** |
---|
862 | * Main method. |
---|
863 | * |
---|
864 | * @param argv the commandline options |
---|
865 | */ |
---|
866 | public static void main(String[] argv) { |
---|
867 | runClassifier(new Winnow(), argv); |
---|
868 | } |
---|
869 | } |
---|