1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * VotedPerceptron.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.classifiers.functions; |
---|
25 | |
---|
26 | import weka.classifiers.Classifier; |
---|
27 | import weka.classifiers.AbstractClassifier; |
---|
28 | import weka.core.Capabilities; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.Option; |
---|
32 | import weka.core.OptionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.TechnicalInformation; |
---|
35 | import weka.core.TechnicalInformationHandler; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | import weka.core.TechnicalInformation.Field; |
---|
39 | import weka.core.TechnicalInformation.Type; |
---|
40 | import weka.filters.Filter; |
---|
41 | import weka.filters.unsupervised.attribute.NominalToBinary; |
---|
42 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
43 | |
---|
44 | import java.util.Enumeration; |
---|
45 | import java.util.Random; |
---|
46 | import java.util.Vector; |
---|
47 | |
---|
48 | /** |
---|
49 | <!-- globalinfo-start --> |
---|
50 | * Implementation of the voted perceptron algorithm by Freund and Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones.<br/> |
---|
51 | * <br/> |
---|
52 | * For more information, see:<br/> |
---|
53 | * <br/> |
---|
54 | * Y. Freund, R. E. Schapire: Large margin classification using the perceptron algorithm. In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998. |
---|
55 | * <p/> |
---|
56 | <!-- globalinfo-end --> |
---|
57 | * |
---|
58 | <!-- technical-bibtex-start --> |
---|
59 | * BibTeX: |
---|
60 | * <pre> |
---|
61 | * @inproceedings{Freund1998, |
---|
62 | * address = {New York, NY}, |
---|
63 | * author = {Y. Freund and R. E. Schapire}, |
---|
64 | * booktitle = {11th Annual Conference on Computational Learning Theory}, |
---|
65 | * pages = {209-217}, |
---|
66 | * publisher = {ACM Press}, |
---|
67 | * title = {Large margin classification using the perceptron algorithm}, |
---|
68 | * year = {1998} |
---|
69 | * } |
---|
70 | * </pre> |
---|
71 | * <p/> |
---|
72 | <!-- technical-bibtex-end --> |
---|
73 | * |
---|
74 | <!-- options-start --> |
---|
75 | * Valid options are: <p/> |
---|
76 | * |
---|
77 | * <pre> -I <int> |
---|
78 | * The number of iterations to be performed. |
---|
79 | * (default 1)</pre> |
---|
80 | * |
---|
81 | * <pre> -E <double> |
---|
82 | * The exponent for the polynomial kernel. |
---|
83 | * (default 1)</pre> |
---|
84 | * |
---|
85 | * <pre> -S <int> |
---|
86 | * The seed for the random number generation. |
---|
87 | * (default 1)</pre> |
---|
88 | * |
---|
89 | * <pre> -M <int> |
---|
90 | * The maximum number of alterations allowed. |
---|
91 | * (default 10000)</pre> |
---|
92 | * |
---|
93 | <!-- options-end --> |
---|
94 | * |
---|
95 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
96 | * @version $Revision: 5928 $ |
---|
97 | */ |
---|
98 | public class VotedPerceptron |
---|
99 | extends AbstractClassifier |
---|
100 | implements OptionHandler, TechnicalInformationHandler { |
---|
101 | |
---|
102 | /** for serialization */ |
---|
103 | static final long serialVersionUID = -1072429260104568698L; |
---|
104 | |
---|
105 | /** The maximum number of alterations to the perceptron */ |
---|
106 | private int m_MaxK = 10000; |
---|
107 | |
---|
108 | /** The number of iterations */ |
---|
109 | private int m_NumIterations = 1; |
---|
110 | |
---|
111 | /** The exponent */ |
---|
112 | private double m_Exponent = 1.0; |
---|
113 | |
---|
114 | /** The actual number of alterations */ |
---|
115 | private int m_K = 0; |
---|
116 | |
---|
117 | /** The training instances added to the perceptron */ |
---|
118 | private int[] m_Additions = null; |
---|
119 | |
---|
120 | /** Addition or subtraction? */ |
---|
121 | private boolean[] m_IsAddition = null; |
---|
122 | |
---|
123 | /** The weights for each perceptron */ |
---|
124 | private int[] m_Weights = null; |
---|
125 | |
---|
126 | /** The training instances */ |
---|
127 | private Instances m_Train = null; |
---|
128 | |
---|
129 | /** Seed used for shuffling the dataset */ |
---|
130 | private int m_Seed = 1; |
---|
131 | |
---|
132 | /** The filter used to make attributes numeric. */ |
---|
133 | private NominalToBinary m_NominalToBinary; |
---|
134 | |
---|
135 | /** The filter used to get rid of missing values. */ |
---|
136 | private ReplaceMissingValues m_ReplaceMissingValues; |
---|
137 | |
---|
138 | /** |
---|
139 | * Returns a string describing this classifier |
---|
140 | * @return a description of the classifier suitable for |
---|
141 | * displaying in the explorer/experimenter gui |
---|
142 | */ |
---|
143 | public String globalInfo() { |
---|
144 | return |
---|
145 | "Implementation of the voted perceptron algorithm by Freund and " |
---|
146 | + "Schapire. Globally replaces all missing values, and transforms " |
---|
147 | + "nominal attributes into binary ones.\n\n" |
---|
148 | + "For more information, see:\n\n" |
---|
149 | + getTechnicalInformation().toString(); |
---|
150 | } |
---|
151 | |
---|
152 | /** |
---|
153 | * Returns an instance of a TechnicalInformation object, containing |
---|
154 | * detailed information about the technical background of this class, |
---|
155 | * e.g., paper reference or book this class is based on. |
---|
156 | * |
---|
157 | * @return the technical information about this class |
---|
158 | */ |
---|
159 | public TechnicalInformation getTechnicalInformation() { |
---|
160 | TechnicalInformation result; |
---|
161 | |
---|
162 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
163 | result.setValue(Field.AUTHOR, "Y. Freund and R. E. Schapire"); |
---|
164 | result.setValue(Field.TITLE, "Large margin classification using the perceptron algorithm"); |
---|
165 | result.setValue(Field.BOOKTITLE, "11th Annual Conference on Computational Learning Theory"); |
---|
166 | result.setValue(Field.YEAR, "1998"); |
---|
167 | result.setValue(Field.PAGES, "209-217"); |
---|
168 | result.setValue(Field.PUBLISHER, "ACM Press"); |
---|
169 | result.setValue(Field.ADDRESS, "New York, NY"); |
---|
170 | |
---|
171 | return result; |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * Returns an enumeration describing the available options. |
---|
176 | * |
---|
177 | * @return an enumeration of all the available options. |
---|
178 | */ |
---|
179 | public Enumeration listOptions() { |
---|
180 | |
---|
181 | Vector newVector = new Vector(4); |
---|
182 | |
---|
183 | newVector.addElement(new Option("\tThe number of iterations to be performed.\n" |
---|
184 | + "\t(default 1)", |
---|
185 | "I", 1, "-I <int>")); |
---|
186 | newVector.addElement(new Option("\tThe exponent for the polynomial kernel.\n" |
---|
187 | + "\t(default 1)", |
---|
188 | "E", 1, "-E <double>")); |
---|
189 | newVector.addElement(new Option("\tThe seed for the random number generation.\n" |
---|
190 | + "\t(default 1)", |
---|
191 | "S", 1, "-S <int>")); |
---|
192 | newVector.addElement(new Option("\tThe maximum number of alterations allowed.\n" |
---|
193 | + "\t(default 10000)", |
---|
194 | "M", 1, "-M <int>")); |
---|
195 | |
---|
196 | return newVector.elements(); |
---|
197 | } |
---|
198 | |
---|
199 | /** |
---|
200 | * Parses a given list of options. <p/> |
---|
201 | * |
---|
202 | <!-- options-start --> |
---|
203 | * Valid options are: <p/> |
---|
204 | * |
---|
205 | * <pre> -I <int> |
---|
206 | * The number of iterations to be performed. |
---|
207 | * (default 1)</pre> |
---|
208 | * |
---|
209 | * <pre> -E <double> |
---|
210 | * The exponent for the polynomial kernel. |
---|
211 | * (default 1)</pre> |
---|
212 | * |
---|
213 | * <pre> -S <int> |
---|
214 | * The seed for the random number generation. |
---|
215 | * (default 1)</pre> |
---|
216 | * |
---|
217 | * <pre> -M <int> |
---|
218 | * The maximum number of alterations allowed. |
---|
219 | * (default 10000)</pre> |
---|
220 | * |
---|
221 | <!-- options-end --> |
---|
222 | * |
---|
223 | * @param options the list of options as an array of strings |
---|
224 | * @throws Exception if an option is not supported |
---|
225 | */ |
---|
226 | public void setOptions(String[] options) throws Exception { |
---|
227 | |
---|
228 | String iterationsString = Utils.getOption('I', options); |
---|
229 | if (iterationsString.length() != 0) { |
---|
230 | m_NumIterations = Integer.parseInt(iterationsString); |
---|
231 | } else { |
---|
232 | m_NumIterations = 1; |
---|
233 | } |
---|
234 | String exponentsString = Utils.getOption('E', options); |
---|
235 | if (exponentsString.length() != 0) { |
---|
236 | m_Exponent = (new Double(exponentsString)).doubleValue(); |
---|
237 | } else { |
---|
238 | m_Exponent = 1.0; |
---|
239 | } |
---|
240 | String seedString = Utils.getOption('S', options); |
---|
241 | if (seedString.length() != 0) { |
---|
242 | m_Seed = Integer.parseInt(seedString); |
---|
243 | } else { |
---|
244 | m_Seed = 1; |
---|
245 | } |
---|
246 | String alterationsString = Utils.getOption('M', options); |
---|
247 | if (alterationsString.length() != 0) { |
---|
248 | m_MaxK = Integer.parseInt(alterationsString); |
---|
249 | } else { |
---|
250 | m_MaxK = 10000; |
---|
251 | } |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * Gets the current settings of the classifier. |
---|
256 | * |
---|
257 | * @return an array of strings suitable for passing to setOptions |
---|
258 | */ |
---|
259 | public String[] getOptions() { |
---|
260 | |
---|
261 | String[] options = new String [8]; |
---|
262 | int current = 0; |
---|
263 | |
---|
264 | options[current++] = "-I"; options[current++] = "" + m_NumIterations; |
---|
265 | options[current++] = "-E"; options[current++] = "" + m_Exponent; |
---|
266 | options[current++] = "-S"; options[current++] = "" + m_Seed; |
---|
267 | options[current++] = "-M"; options[current++] = "" + m_MaxK; |
---|
268 | while (current < options.length) { |
---|
269 | options[current++] = ""; |
---|
270 | } |
---|
271 | return options; |
---|
272 | } |
---|
273 | |
---|
274 | /** |
---|
275 | * Returns default capabilities of the classifier. |
---|
276 | * |
---|
277 | * @return the capabilities of this classifier |
---|
278 | */ |
---|
279 | public Capabilities getCapabilities() { |
---|
280 | Capabilities result = super.getCapabilities(); |
---|
281 | result.disableAll(); |
---|
282 | |
---|
283 | // attributes |
---|
284 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
285 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
286 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
287 | result.enable(Capability.MISSING_VALUES); |
---|
288 | |
---|
289 | // class |
---|
290 | result.enable(Capability.BINARY_CLASS); |
---|
291 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
292 | |
---|
293 | // instances |
---|
294 | result.setMinimumNumberInstances(0); |
---|
295 | |
---|
296 | return result; |
---|
297 | } |
---|
298 | |
---|
299 | /** |
---|
300 | * Builds the ensemble of perceptrons. |
---|
301 | * |
---|
302 | * @param insts the data to train the classifier with |
---|
303 | * @throws Exception if something goes wrong during building |
---|
304 | */ |
---|
305 | public void buildClassifier(Instances insts) throws Exception { |
---|
306 | |
---|
307 | // can classifier handle the data? |
---|
308 | getCapabilities().testWithFail(insts); |
---|
309 | |
---|
310 | // remove instances with missing class |
---|
311 | insts = new Instances(insts); |
---|
312 | insts.deleteWithMissingClass(); |
---|
313 | |
---|
314 | // Filter data |
---|
315 | m_Train = new Instances(insts); |
---|
316 | m_ReplaceMissingValues = new ReplaceMissingValues(); |
---|
317 | m_ReplaceMissingValues.setInputFormat(m_Train); |
---|
318 | m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues); |
---|
319 | |
---|
320 | m_NominalToBinary = new NominalToBinary(); |
---|
321 | m_NominalToBinary.setInputFormat(m_Train); |
---|
322 | m_Train = Filter.useFilter(m_Train, m_NominalToBinary); |
---|
323 | |
---|
324 | /** Randomize training data */ |
---|
325 | m_Train.randomize(new Random(m_Seed)); |
---|
326 | |
---|
327 | /** Make space to store perceptrons */ |
---|
328 | m_Additions = new int[m_MaxK + 1]; |
---|
329 | m_IsAddition = new boolean[m_MaxK + 1]; |
---|
330 | m_Weights = new int[m_MaxK + 1]; |
---|
331 | |
---|
332 | /** Compute perceptrons */ |
---|
333 | m_K = 0; |
---|
334 | out: |
---|
335 | for (int it = 0; it < m_NumIterations; it++) { |
---|
336 | for (int i = 0; i < m_Train.numInstances(); i++) { |
---|
337 | Instance inst = m_Train.instance(i); |
---|
338 | if (!inst.classIsMissing()) { |
---|
339 | int prediction = makePrediction(m_K, inst); |
---|
340 | int classValue = (int) inst.classValue(); |
---|
341 | if (prediction == classValue) { |
---|
342 | m_Weights[m_K]++; |
---|
343 | } else { |
---|
344 | m_IsAddition[m_K] = (classValue == 1); |
---|
345 | m_Additions[m_K] = i; |
---|
346 | m_K++; |
---|
347 | m_Weights[m_K]++; |
---|
348 | } |
---|
349 | if (m_K == m_MaxK) { |
---|
350 | break out; |
---|
351 | } |
---|
352 | } |
---|
353 | } |
---|
354 | } |
---|
355 | } |
---|
356 | |
---|
357 | /** |
---|
358 | * Outputs the distribution for the given output. |
---|
359 | * |
---|
360 | * Pipes output of SVM through sigmoid function. |
---|
361 | * @param inst the instance for which distribution is to be computed |
---|
362 | * @return the distribution |
---|
363 | * @throws Exception if something goes wrong |
---|
364 | */ |
---|
365 | public double[] distributionForInstance(Instance inst) throws Exception { |
---|
366 | |
---|
367 | // Filter instance |
---|
368 | m_ReplaceMissingValues.input(inst); |
---|
369 | m_ReplaceMissingValues.batchFinished(); |
---|
370 | inst = m_ReplaceMissingValues.output(); |
---|
371 | |
---|
372 | m_NominalToBinary.input(inst); |
---|
373 | m_NominalToBinary.batchFinished(); |
---|
374 | inst = m_NominalToBinary.output(); |
---|
375 | |
---|
376 | // Get probabilities |
---|
377 | double output = 0, sumSoFar = 0; |
---|
378 | if (m_K > 0) { |
---|
379 | for (int i = 0; i <= m_K; i++) { |
---|
380 | if (sumSoFar < 0) { |
---|
381 | output -= m_Weights[i]; |
---|
382 | } else { |
---|
383 | output += m_Weights[i]; |
---|
384 | } |
---|
385 | if (m_IsAddition[i]) { |
---|
386 | sumSoFar += innerProduct(m_Train.instance(m_Additions[i]), inst); |
---|
387 | } else { |
---|
388 | sumSoFar -= innerProduct(m_Train.instance(m_Additions[i]), inst); |
---|
389 | } |
---|
390 | } |
---|
391 | } |
---|
392 | double[] result = new double[2]; |
---|
393 | result[1] = 1 / (1 + Math.exp(-output)); |
---|
394 | result[0] = 1 - result[1]; |
---|
395 | |
---|
396 | return result; |
---|
397 | } |
---|
398 | |
---|
399 | /** |
---|
400 | * Returns textual description of classifier. |
---|
401 | * |
---|
402 | * @return the model as string |
---|
403 | */ |
---|
404 | public String toString() { |
---|
405 | |
---|
406 | return "VotedPerceptron: Number of perceptrons=" + m_K; |
---|
407 | } |
---|
408 | |
---|
409 | /** |
---|
410 | * Returns the tip text for this property |
---|
411 | * @return tip text for this property suitable for |
---|
412 | * displaying in the explorer/experimenter gui |
---|
413 | */ |
---|
414 | public String maxKTipText() { |
---|
415 | return "The maximum number of alterations to the perceptron."; |
---|
416 | } |
---|
417 | |
---|
418 | /** |
---|
419 | * Get the value of maxK. |
---|
420 | * |
---|
421 | * @return Value of maxK. |
---|
422 | */ |
---|
423 | public int getMaxK() { |
---|
424 | |
---|
425 | return m_MaxK; |
---|
426 | } |
---|
427 | |
---|
428 | /** |
---|
429 | * Set the value of maxK. |
---|
430 | * |
---|
431 | * @param v Value to assign to maxK. |
---|
432 | */ |
---|
433 | public void setMaxK(int v) { |
---|
434 | |
---|
435 | m_MaxK = v; |
---|
436 | } |
---|
437 | |
---|
438 | /** |
---|
439 | * Returns the tip text for this property |
---|
440 | * @return tip text for this property suitable for |
---|
441 | * displaying in the explorer/experimenter gui |
---|
442 | */ |
---|
443 | public String numIterationsTipText() { |
---|
444 | return "Number of iterations to be performed."; |
---|
445 | } |
---|
446 | |
---|
447 | /** |
---|
448 | * Get the value of NumIterations. |
---|
449 | * |
---|
450 | * @return Value of NumIterations. |
---|
451 | */ |
---|
452 | public int getNumIterations() { |
---|
453 | |
---|
454 | return m_NumIterations; |
---|
455 | } |
---|
456 | |
---|
457 | /** |
---|
458 | * Set the value of NumIterations. |
---|
459 | * |
---|
460 | * @param v Value to assign to NumIterations. |
---|
461 | */ |
---|
462 | public void setNumIterations(int v) { |
---|
463 | |
---|
464 | m_NumIterations = v; |
---|
465 | } |
---|
466 | |
---|
467 | /** |
---|
468 | * Returns the tip text for this property |
---|
469 | * @return tip text for this property suitable for |
---|
470 | * displaying in the explorer/experimenter gui |
---|
471 | */ |
---|
472 | public String exponentTipText() { |
---|
473 | return "Exponent for the polynomial kernel."; |
---|
474 | } |
---|
475 | |
---|
476 | /** |
---|
477 | * Get the value of exponent. |
---|
478 | * |
---|
479 | * @return Value of exponent. |
---|
480 | */ |
---|
481 | public double getExponent() { |
---|
482 | |
---|
483 | return m_Exponent; |
---|
484 | } |
---|
485 | |
---|
486 | /** |
---|
487 | * Set the value of exponent. |
---|
488 | * |
---|
489 | * @param v Value to assign to exponent. |
---|
490 | */ |
---|
491 | public void setExponent(double v) { |
---|
492 | |
---|
493 | m_Exponent = v; |
---|
494 | } |
---|
495 | |
---|
496 | /** |
---|
497 | * Returns the tip text for this property |
---|
498 | * @return tip text for this property suitable for |
---|
499 | * displaying in the explorer/experimenter gui |
---|
500 | */ |
---|
501 | public String seedTipText() { |
---|
502 | return "Seed for the random number generator."; |
---|
503 | } |
---|
504 | |
---|
505 | /** |
---|
506 | * Get the value of Seed. |
---|
507 | * |
---|
508 | * @return Value of Seed. |
---|
509 | */ |
---|
510 | public int getSeed() { |
---|
511 | |
---|
512 | return m_Seed; |
---|
513 | } |
---|
514 | |
---|
515 | /** |
---|
516 | * Set the value of Seed. |
---|
517 | * |
---|
518 | * @param v Value to assign to Seed. |
---|
519 | */ |
---|
520 | public void setSeed(int v) { |
---|
521 | |
---|
522 | m_Seed = v; |
---|
523 | } |
---|
524 | |
---|
525 | /** |
---|
526 | * Computes the inner product of two instances |
---|
527 | * |
---|
528 | * @param i1 first instance |
---|
529 | * @param i2 second instance |
---|
530 | * @return the inner product |
---|
531 | * @throws Exception if computation fails |
---|
532 | */ |
---|
533 | private double innerProduct(Instance i1, Instance i2) throws Exception { |
---|
534 | |
---|
535 | // we can do a fast dot product |
---|
536 | double result = 0; |
---|
537 | int n1 = i1.numValues(); int n2 = i2.numValues(); |
---|
538 | int classIndex = m_Train.classIndex(); |
---|
539 | for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) { |
---|
540 | int ind1 = i1.index(p1); |
---|
541 | int ind2 = i2.index(p2); |
---|
542 | if (ind1 == ind2) { |
---|
543 | if (ind1 != classIndex) { |
---|
544 | result += i1.valueSparse(p1) * |
---|
545 | i2.valueSparse(p2); |
---|
546 | } |
---|
547 | p1++; p2++; |
---|
548 | } else if (ind1 > ind2) { |
---|
549 | p2++; |
---|
550 | } else { |
---|
551 | p1++; |
---|
552 | } |
---|
553 | } |
---|
554 | result += 1.0; |
---|
555 | |
---|
556 | if (m_Exponent != 1) { |
---|
557 | return Math.pow(result, m_Exponent); |
---|
558 | } else { |
---|
559 | return result; |
---|
560 | } |
---|
561 | } |
---|
562 | |
---|
563 | /** |
---|
564 | * Compute a prediction from a perceptron |
---|
565 | * |
---|
566 | * @param k |
---|
567 | * @param inst the instance to make a prediction for |
---|
568 | * @return the prediction |
---|
569 | * @throws Exception if computation fails |
---|
570 | */ |
---|
571 | private int makePrediction(int k, Instance inst) throws Exception { |
---|
572 | |
---|
573 | double result = 0; |
---|
574 | for (int i = 0; i < k; i++) { |
---|
575 | if (m_IsAddition[i]) { |
---|
576 | result += innerProduct(m_Train.instance(m_Additions[i]), inst); |
---|
577 | } else { |
---|
578 | result -= innerProduct(m_Train.instance(m_Additions[i]), inst); |
---|
579 | } |
---|
580 | } |
---|
581 | if (result < 0) { |
---|
582 | return 0; |
---|
583 | } else { |
---|
584 | return 1; |
---|
585 | } |
---|
586 | } |
---|
587 | |
---|
588 | /** |
---|
589 | * Returns the revision string. |
---|
590 | * |
---|
591 | * @return the revision |
---|
592 | */ |
---|
593 | public String getRevision() { |
---|
594 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
595 | } |
---|
596 | |
---|
597 | /** |
---|
598 | * Main method. |
---|
599 | * |
---|
600 | * @param argv the commandline options |
---|
601 | */ |
---|
602 | public static void main(String[] argv) { |
---|
603 | runClassifier(new VotedPerceptron(), argv); |
---|
604 | } |
---|
605 | } |
---|