[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
---|
| 15 | |
---|
| 16 | /* |
---|
| 17 | * PaceRegression.java |
---|
| 18 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | package weka.classifiers.functions; |
---|
| 22 | |
---|
| 23 | import weka.classifiers.Classifier; |
---|
| 24 | import weka.classifiers.AbstractClassifier; |
---|
| 25 | import weka.classifiers.functions.pace.ChisqMixture; |
---|
| 26 | import weka.classifiers.functions.pace.MixtureDistribution; |
---|
| 27 | import weka.classifiers.functions.pace.NormalMixture; |
---|
| 28 | import weka.classifiers.functions.pace.PaceMatrix; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.NoSupportForMissingValuesException; |
---|
| 33 | import weka.core.Option; |
---|
| 34 | import weka.core.OptionHandler; |
---|
| 35 | import weka.core.RevisionUtils; |
---|
| 36 | import weka.core.SelectedTag; |
---|
| 37 | import weka.core.Tag; |
---|
| 38 | import weka.core.TechnicalInformation; |
---|
| 39 | import weka.core.TechnicalInformationHandler; |
---|
| 40 | import weka.core.Utils; |
---|
| 41 | import weka.core.WeightedInstancesHandler; |
---|
| 42 | import weka.core.WekaException; |
---|
| 43 | import weka.core.Capabilities.Capability; |
---|
| 44 | import weka.core.TechnicalInformation.Field; |
---|
| 45 | import weka.core.TechnicalInformation.Type; |
---|
| 46 | import weka.core.matrix.DoubleVector; |
---|
| 47 | import weka.core.matrix.IntVector; |
---|
| 48 | |
---|
| 49 | import java.util.Enumeration; |
---|
| 50 | import java.util.Vector; |
---|
| 51 | |
---|
| 52 | /** |
---|
| 53 | <!-- globalinfo-start --> |
---|
| 54 | * Class for building pace regression linear models and using them for prediction. <br/> |
---|
| 55 | * <br/> |
---|
| 56 | * Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions.<br/> |
---|
| 57 | * <br/> |
---|
| 58 | * The current work of the pace regression theory, and therefore also this implementation, do not handle: <br/> |
---|
| 59 | * <br/> |
---|
| 60 | * - missing values <br/> |
---|
| 61 | * - non-binary nominal attributes <br/> |
---|
| 62 | * - the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20)<br/> |
---|
| 63 | * <br/> |
---|
| 64 | * For more information see:<br/> |
---|
| 65 | * <br/> |
---|
| 66 | * Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand.<br/> |
---|
| 67 | * <br/> |
---|
| 68 | * Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002. |
---|
| 69 | * <p/> |
---|
| 70 | <!-- globalinfo-end --> |
---|
| 71 | * |
---|
| 72 | <!-- technical-bibtex-start --> |
---|
| 73 | * BibTeX: |
---|
| 74 | * <pre> |
---|
| 75 | * @phdthesis{Wang2000, |
---|
| 76 | * address = {Hamilton, New Zealand}, |
---|
| 77 | * author = {Wang, Y}, |
---|
| 78 | * school = {Department of Computer Science, University of Waikato}, |
---|
| 79 | * title = {A new approach to fitting linear models in high dimensional spaces}, |
---|
| 80 | * year = {2000} |
---|
| 81 | * } |
---|
| 82 | * |
---|
| 83 | * @inproceedings{Wang2002, |
---|
| 84 | * address = {Sydney, Australia}, |
---|
| 85 | * author = {Wang, Y. and Witten, I. H.}, |
---|
| 86 | * booktitle = {Proceedings of the Nineteenth International Conference in Machine Learning}, |
---|
| 87 | * pages = {650-657}, |
---|
| 88 | * title = {Modeling for optimal probability prediction}, |
---|
| 89 | * year = {2002} |
---|
| 90 | * } |
---|
| 91 | * </pre> |
---|
| 92 | * <p/> |
---|
| 93 | <!-- technical-bibtex-end --> |
---|
| 94 | * |
---|
| 95 | <!-- options-start --> |
---|
| 96 | * Valid options are: <p/> |
---|
| 97 | * |
---|
| 98 | * <pre> -D |
---|
| 99 | * Produce debugging output. |
---|
| 100 | * (default no debugging output)</pre> |
---|
| 101 | * |
---|
| 102 | * <pre> -E <estimator> |
---|
| 103 | * The estimator can be one of the following: |
---|
| 104 | * eb -- Empirical Bayes estimator for noraml mixture (default) |
---|
| 105 | * nested -- Optimal nested model selector for normal mixture |
---|
| 106 | * subset -- Optimal subset selector for normal mixture |
---|
| 107 | * pace2 -- PACE2 for Chi-square mixture |
---|
| 108 | * pace4 -- PACE4 for Chi-square mixture |
---|
| 109 | * pace6 -- PACE6 for Chi-square mixture |
---|
| 110 | * |
---|
| 111 | * ols -- Ordinary least squares estimator |
---|
| 112 | * aic -- AIC estimator |
---|
| 113 | * bic -- BIC estimator |
---|
| 114 | * ric -- RIC estimator |
---|
| 115 | * olsc -- Ordinary least squares subset selector with a threshold</pre> |
---|
| 116 | * |
---|
| 117 | * <pre> -S <threshold value> |
---|
| 118 | * Threshold value for the OLSC estimator</pre> |
---|
| 119 | * |
---|
| 120 | <!-- options-end --> |
---|
| 121 | * |
---|
| 122 | * @author Yong Wang (yongwang@cs.waikato.ac.nz) |
---|
| 123 | * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) |
---|
| 124 | * @version $Revision: 5928 $ |
---|
| 125 | */ |
---|
| 126 | public class PaceRegression |
---|
| 127 | extends AbstractClassifier |
---|
| 128 | implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler { |
---|
| 129 | |
---|
| 130 | /** for serialization */ |
---|
| 131 | static final long serialVersionUID = 7230266976059115435L; |
---|
| 132 | |
---|
| 133 | /** The model used */ |
---|
| 134 | Instances m_Model = null; |
---|
| 135 | |
---|
| 136 | /** Array for storing coefficients of linear regression. */ |
---|
| 137 | private double[] m_Coefficients; |
---|
| 138 | |
---|
| 139 | /** The index of the class attribute */ |
---|
| 140 | private int m_ClassIndex; |
---|
| 141 | |
---|
| 142 | /** True if debug output will be printed */ |
---|
| 143 | private boolean m_Debug; |
---|
| 144 | |
---|
| 145 | /** estimator type: Ordinary least squares */ |
---|
| 146 | private static final int olsEstimator = 0; |
---|
| 147 | /** estimator type: Empirical Bayes */ |
---|
| 148 | private static final int ebEstimator = 1; |
---|
| 149 | /** estimator type: Nested model selector */ |
---|
| 150 | private static final int nestedEstimator = 2; |
---|
| 151 | /** estimator type: Subset selector */ |
---|
| 152 | private static final int subsetEstimator = 3; |
---|
| 153 | /** estimator type:PACE2 */ |
---|
| 154 | private static final int pace2Estimator = 4; |
---|
| 155 | /** estimator type: PACE4 */ |
---|
| 156 | private static final int pace4Estimator = 5; |
---|
| 157 | /** estimator type: PACE6 */ |
---|
| 158 | private static final int pace6Estimator = 6; |
---|
| 159 | /** estimator type: Ordinary least squares selection */ |
---|
| 160 | private static final int olscEstimator = 7; |
---|
| 161 | /** estimator type: AIC */ |
---|
| 162 | private static final int aicEstimator = 8; |
---|
| 163 | /** estimator type: BIC */ |
---|
| 164 | private static final int bicEstimator = 9; |
---|
| 165 | /** estimator type: RIC */ |
---|
| 166 | private static final int ricEstimator = 10; |
---|
| 167 | /** estimator types */ |
---|
| 168 | public static final Tag [] TAGS_ESTIMATOR = { |
---|
| 169 | new Tag(olsEstimator, "Ordinary least squares"), |
---|
| 170 | new Tag(ebEstimator, "Empirical Bayes"), |
---|
| 171 | new Tag(nestedEstimator, "Nested model selector"), |
---|
| 172 | new Tag(subsetEstimator, "Subset selector"), |
---|
| 173 | new Tag(pace2Estimator, "PACE2"), |
---|
| 174 | new Tag(pace4Estimator, "PACE4"), |
---|
| 175 | new Tag(pace6Estimator, "PACE6"), |
---|
| 176 | new Tag(olscEstimator, "Ordinary least squares selection"), |
---|
| 177 | new Tag(aicEstimator, "AIC"), |
---|
| 178 | new Tag(bicEstimator, "BIC"), |
---|
| 179 | new Tag(ricEstimator, "RIC") |
---|
| 180 | }; |
---|
| 181 | |
---|
| 182 | /** the estimator */ |
---|
| 183 | private int paceEstimator = ebEstimator; |
---|
| 184 | |
---|
| 185 | private double olscThreshold = 2; // AIC |
---|
| 186 | |
---|
| 187 | /** |
---|
| 188 | * Returns a string describing this classifier |
---|
| 189 | * @return a description of the classifier suitable for |
---|
| 190 | * displaying in the explorer/experimenter gui |
---|
| 191 | */ |
---|
| 192 | public String globalInfo() { |
---|
| 193 | return "Class for building pace regression linear models and using them for " |
---|
| 194 | +"prediction. \n\n" |
---|
| 195 | +"Under regularity conditions, pace regression is provably optimal when " |
---|
| 196 | +"the number of coefficients tends to infinity. It consists of a group of " |
---|
| 197 | +"estimators that are either overall optimal or optimal under certain " |
---|
| 198 | +"conditions.\n\n" |
---|
| 199 | +"The current work of the pace regression theory, and therefore also this " |
---|
| 200 | +"implementation, do not handle: \n\n" |
---|
| 201 | +"- missing values \n" |
---|
| 202 | +"- non-binary nominal attributes \n" |
---|
| 203 | +"- the case that n - k is small where n is the number of instances and k is " |
---|
| 204 | +"the number of coefficients (the threshold used in this implmentation is 20)\n\n" |
---|
| 205 | +"For more information see:\n\n" |
---|
| 206 | + getTechnicalInformation().toString(); |
---|
| 207 | } |
---|
| 208 | |
---|
| 209 | /** |
---|
| 210 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 211 | * detailed information about the technical background of this class, |
---|
| 212 | * e.g., paper reference or book this class is based on. |
---|
| 213 | * |
---|
| 214 | * @return the technical information about this class |
---|
| 215 | */ |
---|
| 216 | public TechnicalInformation getTechnicalInformation() { |
---|
| 217 | TechnicalInformation result; |
---|
| 218 | TechnicalInformation additional; |
---|
| 219 | |
---|
| 220 | result = new TechnicalInformation(Type.PHDTHESIS); |
---|
| 221 | result.setValue(Field.AUTHOR, "Wang, Y"); |
---|
| 222 | result.setValue(Field.YEAR, "2000"); |
---|
| 223 | result.setValue(Field.TITLE, "A new approach to fitting linear models in high dimensional spaces"); |
---|
| 224 | result.setValue(Field.SCHOOL, "Department of Computer Science, University of Waikato"); |
---|
| 225 | result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); |
---|
| 226 | |
---|
| 227 | additional = result.add(Type.INPROCEEDINGS); |
---|
| 228 | additional.setValue(Field.AUTHOR, "Wang, Y. and Witten, I. H."); |
---|
| 229 | additional.setValue(Field.YEAR, "2002"); |
---|
| 230 | additional.setValue(Field.TITLE, "Modeling for optimal probability prediction"); |
---|
| 231 | additional.setValue(Field.BOOKTITLE, "Proceedings of the Nineteenth International Conference in Machine Learning"); |
---|
| 232 | additional.setValue(Field.YEAR, "2002"); |
---|
| 233 | additional.setValue(Field.PAGES, "650-657"); |
---|
| 234 | additional.setValue(Field.ADDRESS, "Sydney, Australia"); |
---|
| 235 | |
---|
| 236 | return result; |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | /** |
---|
| 240 | * Returns default capabilities of the classifier. |
---|
| 241 | * |
---|
| 242 | * @return the capabilities of this classifier |
---|
| 243 | */ |
---|
| 244 | public Capabilities getCapabilities() { |
---|
| 245 | Capabilities result = super.getCapabilities(); |
---|
| 246 | result.disableAll(); |
---|
| 247 | |
---|
| 248 | // attributes |
---|
| 249 | result.enable(Capability.BINARY_ATTRIBUTES); |
---|
| 250 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 251 | |
---|
| 252 | // class |
---|
| 253 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 254 | result.enable(Capability.DATE_CLASS); |
---|
| 255 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 256 | |
---|
| 257 | return result; |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | /** |
---|
| 261 | * Builds a pace regression model for the given data. |
---|
| 262 | * |
---|
| 263 | * @param data the training data to be used for generating the |
---|
| 264 | * linear regression function |
---|
| 265 | * @throws Exception if the classifier could not be built successfully |
---|
| 266 | */ |
---|
| 267 | public void buildClassifier(Instances data) throws Exception { |
---|
| 268 | |
---|
| 269 | // can classifier handle the data? |
---|
| 270 | Capabilities cap = getCapabilities(); |
---|
| 271 | cap.setMinimumNumberInstances(20 + data.numAttributes()); |
---|
| 272 | cap.testWithFail(data); |
---|
| 273 | |
---|
| 274 | // remove instances with missing class |
---|
| 275 | data = new Instances(data); |
---|
| 276 | data.deleteWithMissingClass(); |
---|
| 277 | |
---|
| 278 | /* |
---|
| 279 | * initialize the following |
---|
| 280 | */ |
---|
| 281 | m_Model = new Instances(data, 0); |
---|
| 282 | m_ClassIndex = data.classIndex(); |
---|
| 283 | double[][] transformedDataMatrix = |
---|
| 284 | getTransformedDataMatrix(data, m_ClassIndex); |
---|
| 285 | double[] classValueVector = data.attributeToDoubleArray(m_ClassIndex); |
---|
| 286 | |
---|
| 287 | m_Coefficients = null; |
---|
| 288 | |
---|
| 289 | /* |
---|
| 290 | * Perform pace regression |
---|
| 291 | */ |
---|
| 292 | m_Coefficients = pace(transformedDataMatrix, classValueVector); |
---|
| 293 | } |
---|
| 294 | |
---|
| 295 | /** |
---|
| 296 | * pace regression |
---|
| 297 | * |
---|
| 298 | * @param matrix_X matrix with observations |
---|
| 299 | * @param vector_Y vektor with class values |
---|
| 300 | * @return vector with coefficients |
---|
| 301 | */ |
---|
| 302 | private double [] pace(double[][] matrix_X, double [] vector_Y) { |
---|
| 303 | |
---|
| 304 | PaceMatrix X = new PaceMatrix( matrix_X ); |
---|
| 305 | PaceMatrix Y = new PaceMatrix( vector_Y, vector_Y.length ); |
---|
| 306 | IntVector pvt = IntVector.seq(0, X.getColumnDimension()-1); |
---|
| 307 | int n = X.getRowDimension(); |
---|
| 308 | int kr = X.getColumnDimension(); |
---|
| 309 | |
---|
| 310 | X.lsqrSelection( Y, pvt, 1 ); |
---|
| 311 | X.positiveDiagonal( Y, pvt ); |
---|
| 312 | |
---|
| 313 | PaceMatrix sol = (PaceMatrix) Y.clone(); |
---|
| 314 | X.rsolve( sol, pvt, pvt.size() ); |
---|
| 315 | DoubleVector r = Y.getColumn( pvt.size(), n-1, 0); |
---|
| 316 | double sde = Math.sqrt(r.sum2() / r.size()); |
---|
| 317 | |
---|
| 318 | DoubleVector aHat = Y.getColumn( 0, pvt.size()-1, 0).times( 1./sde ); |
---|
| 319 | |
---|
| 320 | DoubleVector aTilde = null; |
---|
| 321 | switch( paceEstimator) { |
---|
| 322 | case ebEstimator: |
---|
| 323 | case nestedEstimator: |
---|
| 324 | case subsetEstimator: |
---|
| 325 | NormalMixture d = new NormalMixture(); |
---|
| 326 | d.fit( aHat, MixtureDistribution.NNMMethod ); |
---|
| 327 | if( paceEstimator == ebEstimator ) |
---|
| 328 | aTilde = d.empiricalBayesEstimate( aHat ); |
---|
| 329 | else if( paceEstimator == ebEstimator ) |
---|
| 330 | aTilde = d.subsetEstimate( aHat ); |
---|
| 331 | else aTilde = d.nestedEstimate( aHat ); |
---|
| 332 | break; |
---|
| 333 | case pace2Estimator: |
---|
| 334 | case pace4Estimator: |
---|
| 335 | case pace6Estimator: |
---|
| 336 | DoubleVector AHat = aHat.square(); |
---|
| 337 | ChisqMixture dc = new ChisqMixture(); |
---|
| 338 | dc.fit( AHat, MixtureDistribution.NNMMethod ); |
---|
| 339 | DoubleVector ATilde; |
---|
| 340 | if( paceEstimator == pace6Estimator ) |
---|
| 341 | ATilde = dc.pace6( AHat ); |
---|
| 342 | else if( paceEstimator == pace2Estimator ) |
---|
| 343 | ATilde = dc.pace2( AHat ); |
---|
| 344 | else ATilde = dc.pace4( AHat ); |
---|
| 345 | aTilde = ATilde.sqrt().times( aHat.sign() ); |
---|
| 346 | break; |
---|
| 347 | case olsEstimator: |
---|
| 348 | aTilde = aHat.copy(); |
---|
| 349 | break; |
---|
| 350 | case aicEstimator: |
---|
| 351 | case bicEstimator: |
---|
| 352 | case ricEstimator: |
---|
| 353 | case olscEstimator: |
---|
| 354 | if(paceEstimator == aicEstimator) olscThreshold = 2; |
---|
| 355 | else if(paceEstimator == bicEstimator) olscThreshold = Math.log( n ); |
---|
| 356 | else if(paceEstimator == ricEstimator) olscThreshold = 2*Math.log( kr ); |
---|
| 357 | aTilde = aHat.copy(); |
---|
| 358 | for( int i = 0; i < aTilde.size(); i++ ) |
---|
| 359 | if( Math.abs(aTilde.get(i)) < Math.sqrt(olscThreshold) ) |
---|
| 360 | aTilde.set(i, 0); |
---|
| 361 | } |
---|
| 362 | PaceMatrix YTilde = new PaceMatrix((new PaceMatrix(aTilde)).times( sde )); |
---|
| 363 | X.rsolve( YTilde, pvt, pvt.size() ); |
---|
| 364 | DoubleVector betaTilde = YTilde.getColumn(0).unpivoting( pvt, kr ); |
---|
| 365 | |
---|
| 366 | return betaTilde.getArrayCopy(); |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | /** |
---|
| 370 | * Checks if an instance has a missing value. |
---|
| 371 | * @param instance the instance |
---|
| 372 | * @param model the data |
---|
| 373 | * @return true if missing value is present |
---|
| 374 | */ |
---|
| 375 | public boolean checkForMissing(Instance instance, Instances model) { |
---|
| 376 | |
---|
| 377 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
| 378 | if (j != model.classIndex()) { |
---|
| 379 | if (instance.isMissing(j)) { |
---|
| 380 | return true; |
---|
| 381 | } |
---|
| 382 | } |
---|
| 383 | } |
---|
| 384 | return false; |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | /** |
---|
| 388 | * Transforms dataset into a two-dimensional array. |
---|
| 389 | * |
---|
| 390 | * @param data dataset |
---|
| 391 | * @param classIndex index of the class attribute |
---|
| 392 | * @return the transformed data |
---|
| 393 | */ |
---|
| 394 | private double [][] getTransformedDataMatrix(Instances data, |
---|
| 395 | int classIndex) { |
---|
| 396 | int numInstances = data.numInstances(); |
---|
| 397 | int numAttributes = data.numAttributes(); |
---|
| 398 | int middle = classIndex; |
---|
| 399 | if (middle < 0) { |
---|
| 400 | middle = numAttributes; |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | double[][] result = new double[numInstances] |
---|
| 404 | [numAttributes]; |
---|
| 405 | for (int i = 0; i < numInstances; i++) { |
---|
| 406 | Instance inst = data.instance(i); |
---|
| 407 | |
---|
| 408 | result[i][0] = 1.0; |
---|
| 409 | |
---|
| 410 | // the class value (lies on index middle) is left out |
---|
| 411 | for (int j = 0; j < middle; j++) { |
---|
| 412 | result[i][j + 1] = inst.value(j); |
---|
| 413 | } |
---|
| 414 | for (int j = middle + 1; j < numAttributes; j++) { |
---|
| 415 | result[i][j] = inst.value(j); |
---|
| 416 | } |
---|
| 417 | } |
---|
| 418 | return result; |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | /** |
---|
| 423 | * Classifies the given instance using the linear regression function. |
---|
| 424 | * |
---|
| 425 | * @param instance the test instance |
---|
| 426 | * @return the classification |
---|
| 427 | * @throws Exception if classification can't be done successfully |
---|
| 428 | */ |
---|
| 429 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 430 | |
---|
| 431 | if (m_Coefficients == null) { |
---|
| 432 | throw new Exception("Pace Regression: No model built yet."); |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | // check for missing data and throw exception if some are found |
---|
| 436 | if (checkForMissing(instance, m_Model)) { |
---|
| 437 | throw new NoSupportForMissingValuesException("Can't handle missing values!"); |
---|
| 438 | } |
---|
| 439 | |
---|
| 440 | // Calculate the dependent variable from the regression model |
---|
| 441 | return regressionPrediction(instance, |
---|
| 442 | m_Coefficients); |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | /** |
---|
| 446 | * Outputs the linear regression model as a string. |
---|
| 447 | * |
---|
| 448 | * @return the model as string |
---|
| 449 | */ |
---|
| 450 | public String toString() { |
---|
| 451 | |
---|
| 452 | if (m_Coefficients == null) { |
---|
| 453 | return "Pace Regression: No model built yet."; |
---|
| 454 | } |
---|
| 455 | // try { |
---|
| 456 | StringBuffer text = new StringBuffer(); |
---|
| 457 | |
---|
| 458 | text.append("\nPace Regression Model\n\n"); |
---|
| 459 | |
---|
| 460 | text.append(m_Model.classAttribute().name()+" =\n\n"); |
---|
| 461 | int index = 0; |
---|
| 462 | |
---|
| 463 | text.append(Utils.doubleToString(m_Coefficients[0], |
---|
| 464 | 12, 4) ); |
---|
| 465 | |
---|
| 466 | for (int i = 1; i < m_Coefficients.length; i++) { |
---|
| 467 | |
---|
| 468 | // jump over the class attribute |
---|
| 469 | if (index == m_ClassIndex) index++; |
---|
| 470 | |
---|
| 471 | if (m_Coefficients[i] != 0.0) { |
---|
| 472 | // output a coefficient if unequal zero |
---|
| 473 | text.append(" +\n"); |
---|
| 474 | text.append(Utils.doubleToString(m_Coefficients[i], 12, 4) |
---|
| 475 | + " * "); |
---|
| 476 | text.append(m_Model.attribute(index).name()); |
---|
| 477 | } |
---|
| 478 | index ++; |
---|
| 479 | } |
---|
| 480 | |
---|
| 481 | return text.toString(); |
---|
| 482 | } |
---|
| 483 | |
---|
| 484 | /** |
---|
| 485 | * Returns an enumeration describing the available options. |
---|
| 486 | * |
---|
| 487 | * @return an enumeration of all the available options. |
---|
| 488 | */ |
---|
| 489 | public Enumeration listOptions() { |
---|
| 490 | |
---|
| 491 | Vector newVector = new Vector(2); |
---|
| 492 | newVector.addElement(new Option("\tProduce debugging output.\n" |
---|
| 493 | + "\t(default no debugging output)", |
---|
| 494 | "D", 0, "-D")); |
---|
| 495 | newVector.addElement(new Option("\tThe estimator can be one of the following:\n" + |
---|
| 496 | "\t\teb -- Empirical Bayes estimator for noraml mixture (default)\n" + |
---|
| 497 | "\t\tnested -- Optimal nested model selector for normal mixture\n" + |
---|
| 498 | "\t\tsubset -- Optimal subset selector for normal mixture\n" + |
---|
| 499 | "\t\tpace2 -- PACE2 for Chi-square mixture\n" + |
---|
| 500 | "\t\tpace4 -- PACE4 for Chi-square mixture\n" + |
---|
| 501 | "\t\tpace6 -- PACE6 for Chi-square mixture\n\n" + |
---|
| 502 | "\t\tols -- Ordinary least squares estimator\n" + |
---|
| 503 | "\t\taic -- AIC estimator\n" + |
---|
| 504 | "\t\tbic -- BIC estimator\n" + |
---|
| 505 | "\t\tric -- RIC estimator\n" + |
---|
| 506 | "\t\tolsc -- Ordinary least squares subset selector with a threshold", |
---|
| 507 | "E", 0, "-E <estimator>")); |
---|
| 508 | newVector.addElement(new Option("\tThreshold value for the OLSC estimator", |
---|
| 509 | "S", 0, "-S <threshold value>")); |
---|
| 510 | return newVector.elements(); |
---|
| 511 | } |
---|
| 512 | |
---|
| 513 | /** |
---|
| 514 | * Parses a given list of options. <p/> |
---|
| 515 | * |
---|
| 516 | <!-- options-start --> |
---|
| 517 | * Valid options are: <p/> |
---|
| 518 | * |
---|
| 519 | * <pre> -D |
---|
| 520 | * Produce debugging output. |
---|
| 521 | * (default no debugging output)</pre> |
---|
| 522 | * |
---|
| 523 | * <pre> -E <estimator> |
---|
| 524 | * The estimator can be one of the following: |
---|
| 525 | * eb -- Empirical Bayes estimator for noraml mixture (default) |
---|
| 526 | * nested -- Optimal nested model selector for normal mixture |
---|
| 527 | * subset -- Optimal subset selector for normal mixture |
---|
| 528 | * pace2 -- PACE2 for Chi-square mixture |
---|
| 529 | * pace4 -- PACE4 for Chi-square mixture |
---|
| 530 | * pace6 -- PACE6 for Chi-square mixture |
---|
| 531 | * |
---|
| 532 | * ols -- Ordinary least squares estimator |
---|
| 533 | * aic -- AIC estimator |
---|
| 534 | * bic -- BIC estimator |
---|
| 535 | * ric -- RIC estimator |
---|
| 536 | * olsc -- Ordinary least squares subset selector with a threshold</pre> |
---|
| 537 | * |
---|
| 538 | * <pre> -S <threshold value> |
---|
| 539 | * Threshold value for the OLSC estimator</pre> |
---|
| 540 | * |
---|
| 541 | <!-- options-end --> |
---|
| 542 | * |
---|
| 543 | * @param options the list of options as an array of strings |
---|
| 544 | * @throws Exception if an option is not supported |
---|
| 545 | */ |
---|
| 546 | public void setOptions(String[] options) throws Exception { |
---|
| 547 | |
---|
| 548 | setDebug(Utils.getFlag('D', options)); |
---|
| 549 | |
---|
| 550 | String estimator = Utils.getOption('E', options); |
---|
| 551 | if ( estimator.equals("ols") ) paceEstimator = olsEstimator; |
---|
| 552 | else if ( estimator.equals("olsc") ) paceEstimator = olscEstimator; |
---|
| 553 | else if( estimator.equals("eb") || estimator.equals("") ) |
---|
| 554 | paceEstimator = ebEstimator; |
---|
| 555 | else if ( estimator.equals("nested") ) paceEstimator = nestedEstimator; |
---|
| 556 | else if ( estimator.equals("subset") ) paceEstimator = subsetEstimator; |
---|
| 557 | else if ( estimator.equals("pace2") ) paceEstimator = pace2Estimator; |
---|
| 558 | else if ( estimator.equals("pace4") ) paceEstimator = pace4Estimator; |
---|
| 559 | else if ( estimator.equals("pace6") ) paceEstimator = pace6Estimator; |
---|
| 560 | else if ( estimator.equals("aic") ) paceEstimator = aicEstimator; |
---|
| 561 | else if ( estimator.equals("bic") ) paceEstimator = bicEstimator; |
---|
| 562 | else if ( estimator.equals("ric") ) paceEstimator = ricEstimator; |
---|
| 563 | else throw new WekaException("unknown estimator " + estimator + |
---|
| 564 | " for -E option" ); |
---|
| 565 | |
---|
| 566 | String string = Utils.getOption('S', options); |
---|
| 567 | if( ! string.equals("") ) olscThreshold = Double.parseDouble( string ); |
---|
| 568 | |
---|
| 569 | } |
---|
| 570 | |
---|
| 571 | /** |
---|
| 572 | * Returns the coefficients for this linear model. |
---|
| 573 | * |
---|
| 574 | * @return the coefficients for this linear model |
---|
| 575 | */ |
---|
| 576 | public double[] coefficients() { |
---|
| 577 | |
---|
| 578 | double[] coefficients = new double[m_Coefficients.length]; |
---|
| 579 | for (int i = 0; i < coefficients.length; i++) { |
---|
| 580 | coefficients[i] = m_Coefficients[i]; |
---|
| 581 | } |
---|
| 582 | return coefficients; |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | /** |
---|
| 586 | * Gets the current settings of the classifier. |
---|
| 587 | * |
---|
| 588 | * @return an array of strings suitable for passing to setOptions |
---|
| 589 | */ |
---|
| 590 | public String [] getOptions() { |
---|
| 591 | |
---|
| 592 | String [] options = new String [6]; |
---|
| 593 | int current = 0; |
---|
| 594 | |
---|
| 595 | if (getDebug()) { |
---|
| 596 | options[current++] = "-D"; |
---|
| 597 | } |
---|
| 598 | |
---|
| 599 | options[current++] = "-E"; |
---|
| 600 | switch (paceEstimator) { |
---|
| 601 | case olsEstimator: options[current++] = "ols"; |
---|
| 602 | break; |
---|
| 603 | case olscEstimator: options[current++] = "olsc"; |
---|
| 604 | options[current++] = "-S"; |
---|
| 605 | options[current++] = "" + olscThreshold; |
---|
| 606 | break; |
---|
| 607 | case ebEstimator: options[current++] = "eb"; |
---|
| 608 | break; |
---|
| 609 | case nestedEstimator: options[current++] = "nested"; |
---|
| 610 | break; |
---|
| 611 | case subsetEstimator: options[current++] = "subset"; |
---|
| 612 | break; |
---|
| 613 | case pace2Estimator: options[current++] = "pace2"; |
---|
| 614 | break; |
---|
| 615 | case pace4Estimator: options[current++] = "pace4"; |
---|
| 616 | break; |
---|
| 617 | case pace6Estimator: options[current++] = "pace6"; |
---|
| 618 | break; |
---|
| 619 | case aicEstimator: options[current++] = "aic"; |
---|
| 620 | break; |
---|
| 621 | case bicEstimator: options[current++] = "bic"; |
---|
| 622 | break; |
---|
| 623 | case ricEstimator: options[current++] = "ric"; |
---|
| 624 | break; |
---|
| 625 | } |
---|
| 626 | |
---|
| 627 | while (current < options.length) { |
---|
| 628 | options[current++] = ""; |
---|
| 629 | } |
---|
| 630 | return options; |
---|
| 631 | } |
---|
| 632 | |
---|
| 633 | |
---|
| 634 | /** |
---|
| 635 | * Get the number of coefficients used in the model |
---|
| 636 | * |
---|
| 637 | * @return the number of coefficients |
---|
| 638 | */ |
---|
| 639 | public int numParameters() |
---|
| 640 | { |
---|
| 641 | return m_Coefficients.length-1; |
---|
| 642 | } |
---|
| 643 | |
---|
| 644 | /** |
---|
| 645 | * Returns the tip text for this property |
---|
| 646 | * @return tip text for this property suitable for |
---|
| 647 | * displaying in the explorer/experimenter gui |
---|
| 648 | */ |
---|
| 649 | public String debugTipText() { |
---|
| 650 | return "Output debug information to the console."; |
---|
| 651 | } |
---|
| 652 | |
---|
| 653 | /** |
---|
| 654 | * Controls whether debugging output will be printed |
---|
| 655 | * |
---|
| 656 | * @param debug true if debugging output should be printed |
---|
| 657 | */ |
---|
| 658 | public void setDebug(boolean debug) { |
---|
| 659 | |
---|
| 660 | m_Debug = debug; |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | /** |
---|
| 664 | * Controls whether debugging output will be printed |
---|
| 665 | * |
---|
| 666 | * @return true if debugging output should be printed |
---|
| 667 | */ |
---|
| 668 | public boolean getDebug() { |
---|
| 669 | |
---|
| 670 | return m_Debug; |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | /** |
---|
| 674 | * Returns the tip text for this property |
---|
| 675 | * @return tip text for this property suitable for |
---|
| 676 | * displaying in the explorer/experimenter gui |
---|
| 677 | */ |
---|
| 678 | public String estimatorTipText() { |
---|
| 679 | return "The estimator to use.\n\n" |
---|
| 680 | +"eb -- Empirical Bayes estimator for noraml mixture (default)\n" |
---|
| 681 | +"nested -- Optimal nested model selector for normal mixture\n" |
---|
| 682 | +"subset -- Optimal subset selector for normal mixture\n" |
---|
| 683 | +"pace2 -- PACE2 for Chi-square mixture\n" |
---|
| 684 | +"pace4 -- PACE4 for Chi-square mixture\n" |
---|
| 685 | +"pace6 -- PACE6 for Chi-square mixture\n" |
---|
| 686 | +"ols -- Ordinary least squares estimator\n" |
---|
| 687 | +"aic -- AIC estimator\n" |
---|
| 688 | +"bic -- BIC estimator\n" |
---|
| 689 | +"ric -- RIC estimator\n" |
---|
| 690 | +"olsc -- Ordinary least squares subset selector with a threshold"; |
---|
| 691 | } |
---|
| 692 | |
---|
| 693 | /** |
---|
| 694 | * Gets the estimator |
---|
| 695 | * |
---|
| 696 | * @return the estimator |
---|
| 697 | */ |
---|
| 698 | public SelectedTag getEstimator() { |
---|
| 699 | |
---|
| 700 | return new SelectedTag(paceEstimator, TAGS_ESTIMATOR); |
---|
| 701 | } |
---|
| 702 | |
---|
| 703 | /** |
---|
| 704 | * Sets the estimator. |
---|
| 705 | * |
---|
| 706 | * @param estimator the new estimator |
---|
| 707 | */ |
---|
| 708 | public void setEstimator(SelectedTag estimator) { |
---|
| 709 | |
---|
| 710 | if (estimator.getTags() == TAGS_ESTIMATOR) { |
---|
| 711 | paceEstimator = estimator.getSelectedTag().getID(); |
---|
| 712 | } |
---|
| 713 | } |
---|
| 714 | |
---|
| 715 | /** |
---|
| 716 | * Returns the tip text for this property |
---|
| 717 | * @return tip text for this property suitable for |
---|
| 718 | * displaying in the explorer/experimenter gui |
---|
| 719 | */ |
---|
| 720 | public String thresholdTipText() { |
---|
| 721 | return "Threshold for the olsc estimator."; |
---|
| 722 | } |
---|
| 723 | |
---|
| 724 | /** |
---|
| 725 | * Set threshold for the olsc estimator |
---|
| 726 | * |
---|
| 727 | * @param newThreshold the threshold for the olsc estimator |
---|
| 728 | */ |
---|
| 729 | public void setThreshold(double newThreshold) { |
---|
| 730 | |
---|
| 731 | olscThreshold = newThreshold; |
---|
| 732 | } |
---|
| 733 | |
---|
| 734 | /** |
---|
| 735 | * Gets the threshold for olsc estimator |
---|
| 736 | * |
---|
| 737 | * @return the threshold |
---|
| 738 | */ |
---|
| 739 | public double getThreshold() { |
---|
| 740 | |
---|
| 741 | return olscThreshold; |
---|
| 742 | } |
---|
| 743 | |
---|
| 744 | |
---|
| 745 | /** |
---|
| 746 | * Calculate the dependent value for a given instance for a |
---|
| 747 | * given regression model. |
---|
| 748 | * |
---|
| 749 | * @param transformedInstance the input instance |
---|
| 750 | * @param coefficients an array of coefficients for the regression |
---|
| 751 | * model |
---|
| 752 | * @return the regression value for the instance. |
---|
| 753 | * @throws Exception if the class attribute of the input instance |
---|
| 754 | * is not assigned |
---|
| 755 | */ |
---|
| 756 | private double regressionPrediction(Instance transformedInstance, |
---|
| 757 | double [] coefficients) |
---|
| 758 | throws Exception { |
---|
| 759 | |
---|
| 760 | int column = 0; |
---|
| 761 | double result = coefficients[column]; |
---|
| 762 | for (int j = 0; j < transformedInstance.numAttributes(); j++) { |
---|
| 763 | if (m_ClassIndex != j) { |
---|
| 764 | column++; |
---|
| 765 | result += coefficients[column] * transformedInstance.value(j); |
---|
| 766 | } |
---|
| 767 | } |
---|
| 768 | |
---|
| 769 | return result; |
---|
| 770 | } |
---|
| 771 | |
---|
| 772 | /** |
---|
| 773 | * Returns the revision string. |
---|
| 774 | * |
---|
| 775 | * @return the revision |
---|
| 776 | */ |
---|
| 777 | public String getRevision() { |
---|
| 778 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 779 | } |
---|
| 780 | |
---|
| 781 | /** |
---|
| 782 | * Generates a linear regression function predictor. |
---|
| 783 | * |
---|
| 784 | * @param argv the options |
---|
| 785 | */ |
---|
| 786 | public static void main(String argv[]) { |
---|
| 787 | runClassifier(new PaceRegression(), argv); |
---|
| 788 | } |
---|
| 789 | } |
---|
| 790 | |
---|