[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * LeastMedSq.java |
---|
| 19 | * |
---|
| 20 | * Copyright (C) 2001 University of Waikato |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.functions; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.Capabilities; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.TechnicalInformation; |
---|
| 34 | import weka.core.TechnicalInformationHandler; |
---|
| 35 | import weka.core.Utils; |
---|
| 36 | import weka.core.Capabilities.Capability; |
---|
| 37 | import weka.core.TechnicalInformation.Field; |
---|
| 38 | import weka.core.TechnicalInformation.Type; |
---|
| 39 | import weka.filters.Filter; |
---|
| 40 | import weka.filters.supervised.attribute.NominalToBinary; |
---|
| 41 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 42 | import weka.filters.unsupervised.instance.RemoveRange; |
---|
| 43 | |
---|
| 44 | import java.util.Enumeration; |
---|
| 45 | import java.util.Random; |
---|
| 46 | import java.util.Vector; |
---|
| 47 | |
---|
| 48 | /** |
---|
| 49 | <!-- globalinfo-start --> |
---|
| 50 | * Implements a least median sqaured linear regression utilising the existing weka LinearRegression class to form predictions. <br/> |
---|
| 51 | * Least squared regression functions are generated from random subsamples of the data. The least squared regression with the lowest meadian squared error is chosen as the final model.<br/> |
---|
| 52 | * <br/> |
---|
| 53 | * The basis of the algorithm is <br/> |
---|
| 54 | * <br/> |
---|
| 55 | * Peter J. Rousseeuw, Annick M. Leroy (1987). Robust regression and outlier detection. . |
---|
| 56 | * <p/> |
---|
| 57 | <!-- globalinfo-end --> |
---|
| 58 | * |
---|
| 59 | <!-- technical-bibtex-start --> |
---|
| 60 | * BibTeX: |
---|
| 61 | * <pre> |
---|
| 62 | * @book{Rousseeuw1987, |
---|
| 63 | * author = {Peter J. Rousseeuw and Annick M. Leroy}, |
---|
| 64 | * title = {Robust regression and outlier detection}, |
---|
| 65 | * year = {1987} |
---|
| 66 | * } |
---|
| 67 | * </pre> |
---|
| 68 | * <p/> |
---|
| 69 | <!-- technical-bibtex-end --> |
---|
| 70 | * |
---|
| 71 | <!-- options-start --> |
---|
| 72 | * Valid options are: <p/> |
---|
| 73 | * |
---|
| 74 | * <pre> -S <sample size> |
---|
| 75 | * Set sample size |
---|
| 76 | * (default: 4) |
---|
| 77 | * </pre> |
---|
| 78 | * |
---|
| 79 | * <pre> -G <seed> |
---|
| 80 | * Set the seed used to generate samples |
---|
| 81 | * (default: 0) |
---|
| 82 | * </pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -D |
---|
| 85 | * Produce debugging output |
---|
| 86 | * (default no debugging output) |
---|
| 87 | * </pre> |
---|
| 88 | * |
---|
| 89 | <!-- options-end --> |
---|
| 90 | * |
---|
| 91 | * @author Tony Voyle (tv6@waikato.ac.nz) |
---|
| 92 | * @version $Revision: 5928 $ |
---|
| 93 | */ |
---|
| 94 | public class LeastMedSq |
---|
| 95 | extends AbstractClassifier |
---|
| 96 | implements OptionHandler, TechnicalInformationHandler { |
---|
| 97 | |
---|
| 98 | /** for serialization */ |
---|
| 99 | static final long serialVersionUID = 4288954049987652970L; |
---|
| 100 | |
---|
| 101 | private double[] m_Residuals; |
---|
| 102 | |
---|
| 103 | private double[] m_weight; |
---|
| 104 | |
---|
| 105 | private double m_SSR; |
---|
| 106 | |
---|
| 107 | private double m_scalefactor; |
---|
| 108 | |
---|
| 109 | private double m_bestMedian = Double.POSITIVE_INFINITY; |
---|
| 110 | |
---|
| 111 | private LinearRegression m_currentRegression; |
---|
| 112 | |
---|
| 113 | private LinearRegression m_bestRegression; |
---|
| 114 | |
---|
| 115 | private LinearRegression m_ls; |
---|
| 116 | |
---|
| 117 | private Instances m_Data; |
---|
| 118 | |
---|
| 119 | private Instances m_RLSData; |
---|
| 120 | |
---|
| 121 | private Instances m_SubSample; |
---|
| 122 | |
---|
| 123 | private ReplaceMissingValues m_MissingFilter; |
---|
| 124 | |
---|
| 125 | private NominalToBinary m_TransformFilter; |
---|
| 126 | |
---|
| 127 | private RemoveRange m_SplitFilter; |
---|
| 128 | |
---|
| 129 | private int m_samplesize = 4; |
---|
| 130 | |
---|
| 131 | private int m_samples; |
---|
| 132 | |
---|
| 133 | private boolean m_israndom = false; |
---|
| 134 | |
---|
| 135 | private boolean m_debug = false; |
---|
| 136 | |
---|
| 137 | private Random m_random; |
---|
| 138 | |
---|
| 139 | private long m_randomseed = 0; |
---|
| 140 | |
---|
| 141 | /** |
---|
| 142 | * Returns a string describing this classifier |
---|
| 143 | * @return a description of the classifier suitable for |
---|
| 144 | * displaying in the explorer/experimenter gui |
---|
| 145 | */ |
---|
| 146 | public String globalInfo() { |
---|
| 147 | return "Implements a least median sqaured linear regression utilising the " |
---|
| 148 | +"existing weka LinearRegression class to form predictions. \n" |
---|
| 149 | +"Least squared regression functions are generated from random subsamples of " |
---|
| 150 | +"the data. The least squared regression with the lowest meadian squared error " |
---|
| 151 | +"is chosen as the final model.\n\n" |
---|
| 152 | +"The basis of the algorithm is \n\n" |
---|
| 153 | + getTechnicalInformation().toString(); |
---|
| 154 | } |
---|
| 155 | |
---|
| 156 | /** |
---|
| 157 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 158 | * detailed information about the technical background of this class, |
---|
| 159 | * e.g., paper reference or book this class is based on. |
---|
| 160 | * |
---|
| 161 | * @return the technical information about this class |
---|
| 162 | */ |
---|
| 163 | public TechnicalInformation getTechnicalInformation() { |
---|
| 164 | TechnicalInformation result; |
---|
| 165 | |
---|
| 166 | result = new TechnicalInformation(Type.BOOK); |
---|
| 167 | result.setValue(Field.AUTHOR, "Peter J. Rousseeuw and Annick M. Leroy"); |
---|
| 168 | result.setValue(Field.YEAR, "1987"); |
---|
| 169 | result.setValue(Field.TITLE, "Robust regression and outlier detection"); |
---|
| 170 | |
---|
| 171 | return result; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | /** |
---|
| 175 | * Returns default capabilities of the classifier. |
---|
| 176 | * |
---|
| 177 | * @return the capabilities of this classifier |
---|
| 178 | */ |
---|
| 179 | public Capabilities getCapabilities() { |
---|
| 180 | Capabilities result = super.getCapabilities(); |
---|
| 181 | result.disableAll(); |
---|
| 182 | |
---|
| 183 | // attributes |
---|
| 184 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 185 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 186 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 187 | result.enable(Capability.MISSING_VALUES); |
---|
| 188 | |
---|
| 189 | // class |
---|
| 190 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 191 | result.enable(Capability.DATE_CLASS); |
---|
| 192 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 193 | |
---|
| 194 | return result; |
---|
| 195 | } |
---|
| 196 | |
---|
| 197 | /** |
---|
| 198 | * Build lms regression |
---|
| 199 | * |
---|
| 200 | * @param data training data |
---|
| 201 | * @throws Exception if an error occurs |
---|
| 202 | */ |
---|
| 203 | public void buildClassifier(Instances data)throws Exception{ |
---|
| 204 | |
---|
| 205 | // can classifier handle the data? |
---|
| 206 | getCapabilities().testWithFail(data); |
---|
| 207 | |
---|
| 208 | // remove instances with missing class |
---|
| 209 | data = new Instances(data); |
---|
| 210 | data.deleteWithMissingClass(); |
---|
| 211 | |
---|
| 212 | cleanUpData(data); |
---|
| 213 | |
---|
| 214 | getSamples(); |
---|
| 215 | |
---|
| 216 | findBestRegression(); |
---|
| 217 | |
---|
| 218 | buildRLSRegression(); |
---|
| 219 | |
---|
| 220 | } // buildClassifier |
---|
| 221 | |
---|
| 222 | /** |
---|
| 223 | * Classify a given instance using the best generated |
---|
| 224 | * LinearRegression Classifier. |
---|
| 225 | * |
---|
| 226 | * @param instance instance to be classified |
---|
| 227 | * @return class value |
---|
| 228 | * @throws Exception if an error occurs |
---|
| 229 | */ |
---|
| 230 | public double classifyInstance(Instance instance)throws Exception{ |
---|
| 231 | |
---|
| 232 | Instance transformedInstance = instance; |
---|
| 233 | m_TransformFilter.input(transformedInstance); |
---|
| 234 | transformedInstance = m_TransformFilter.output(); |
---|
| 235 | m_MissingFilter.input(transformedInstance); |
---|
| 236 | transformedInstance = m_MissingFilter.output(); |
---|
| 237 | |
---|
| 238 | return m_ls.classifyInstance(transformedInstance); |
---|
| 239 | } // classifyInstance |
---|
| 240 | |
---|
| 241 | /** |
---|
| 242 | * Cleans up data |
---|
| 243 | * |
---|
| 244 | * @param data data to be cleaned up |
---|
| 245 | * @throws Exception if an error occurs |
---|
| 246 | */ |
---|
| 247 | private void cleanUpData(Instances data)throws Exception{ |
---|
| 248 | |
---|
| 249 | m_Data = data; |
---|
| 250 | m_TransformFilter = new NominalToBinary(); |
---|
| 251 | m_TransformFilter.setInputFormat(m_Data); |
---|
| 252 | m_Data = Filter.useFilter(m_Data, m_TransformFilter); |
---|
| 253 | m_MissingFilter = new ReplaceMissingValues(); |
---|
| 254 | m_MissingFilter.setInputFormat(m_Data); |
---|
| 255 | m_Data = Filter.useFilter(m_Data, m_MissingFilter); |
---|
| 256 | m_Data.deleteWithMissingClass(); |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | /** |
---|
| 260 | * Gets the number of samples to use. |
---|
| 261 | * |
---|
| 262 | * @throws Exception if an error occurs |
---|
| 263 | */ |
---|
| 264 | private void getSamples()throws Exception{ |
---|
| 265 | |
---|
| 266 | int stuf[] = new int[] {500,50,22,17,15,14}; |
---|
| 267 | if ( m_samplesize < 7){ |
---|
| 268 | if ( m_Data.numInstances() < stuf[m_samplesize - 1]) |
---|
| 269 | m_samples = combinations(m_Data.numInstances(), m_samplesize); |
---|
| 270 | else |
---|
| 271 | m_samples = m_samplesize * 500; |
---|
| 272 | |
---|
| 273 | } else m_samples = 3000; |
---|
| 274 | if (m_debug){ |
---|
| 275 | System.out.println("m_samplesize: " + m_samplesize); |
---|
| 276 | System.out.println("m_samples: " + m_samples); |
---|
| 277 | System.out.println("m_randomseed: " + m_randomseed); |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | /** |
---|
| 283 | * Set up the random number generator |
---|
| 284 | * |
---|
| 285 | */ |
---|
| 286 | private void setRandom(){ |
---|
| 287 | |
---|
| 288 | m_random = new Random(getRandomSeed()); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | /** |
---|
| 292 | * Finds the best regression generated from m_samples |
---|
| 293 | * random samples from the training data |
---|
| 294 | * |
---|
| 295 | * @throws Exception if an error occurs |
---|
| 296 | */ |
---|
| 297 | private void findBestRegression()throws Exception{ |
---|
| 298 | |
---|
| 299 | setRandom(); |
---|
| 300 | m_bestMedian = Double.POSITIVE_INFINITY; |
---|
| 301 | if (m_debug) { |
---|
| 302 | System.out.println("Starting:"); |
---|
| 303 | } |
---|
| 304 | for(int s = 0, r = 0; s < m_samples; s++, r++){ |
---|
| 305 | if (m_debug) { |
---|
| 306 | if(s%(m_samples/100)==0) |
---|
| 307 | System.out.print("*"); |
---|
| 308 | } |
---|
| 309 | genRegression(); |
---|
| 310 | getMedian(); |
---|
| 311 | } |
---|
| 312 | if (m_debug) { |
---|
| 313 | System.out.println(""); |
---|
| 314 | } |
---|
| 315 | m_currentRegression = m_bestRegression; |
---|
| 316 | } |
---|
| 317 | |
---|
| 318 | /** |
---|
| 319 | * Generates a LinearRegression classifier from |
---|
| 320 | * the current m_SubSample |
---|
| 321 | * |
---|
| 322 | * @throws Exception if an error occurs |
---|
| 323 | */ |
---|
| 324 | private void genRegression()throws Exception{ |
---|
| 325 | |
---|
| 326 | m_currentRegression = new LinearRegression(); |
---|
| 327 | m_currentRegression.setOptions(new String[]{"-S", "1"}); |
---|
| 328 | selectSubSample(m_Data); |
---|
| 329 | m_currentRegression.buildClassifier(m_SubSample); |
---|
| 330 | } |
---|
| 331 | |
---|
| 332 | /** |
---|
| 333 | * Finds residuals (squared) for the current |
---|
| 334 | * regression. |
---|
| 335 | * |
---|
| 336 | * @throws Exception if an error occurs |
---|
| 337 | */ |
---|
| 338 | private void findResiduals()throws Exception{ |
---|
| 339 | |
---|
| 340 | m_SSR = 0; |
---|
| 341 | m_Residuals = new double [m_Data.numInstances()]; |
---|
| 342 | for(int i = 0; i < m_Data.numInstances(); i++){ |
---|
| 343 | m_Residuals[i] = m_currentRegression.classifyInstance(m_Data.instance(i)); |
---|
| 344 | m_Residuals[i] -= m_Data.instance(i).value(m_Data.classAttribute()); |
---|
| 345 | m_Residuals[i] *= m_Residuals[i]; |
---|
| 346 | m_SSR += m_Residuals[i]; |
---|
| 347 | } |
---|
| 348 | } |
---|
| 349 | |
---|
| 350 | /** |
---|
| 351 | * finds the median residual squared for the |
---|
| 352 | * current regression |
---|
| 353 | * |
---|
| 354 | * @throws Exception if an error occurs |
---|
| 355 | */ |
---|
| 356 | private void getMedian()throws Exception{ |
---|
| 357 | |
---|
| 358 | findResiduals(); |
---|
| 359 | int p = m_Residuals.length; |
---|
| 360 | select(m_Residuals, 0, p - 1, p / 2); |
---|
| 361 | if(m_Residuals[p / 2] < m_bestMedian){ |
---|
| 362 | m_bestMedian = m_Residuals[p / 2]; |
---|
| 363 | m_bestRegression = m_currentRegression; |
---|
| 364 | } |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | /** |
---|
| 368 | * Returns a string representing the best |
---|
| 369 | * LinearRegression classifier found. |
---|
| 370 | * |
---|
| 371 | * @return String representing the regression |
---|
| 372 | */ |
---|
| 373 | public String toString(){ |
---|
| 374 | |
---|
| 375 | if( m_ls == null){ |
---|
| 376 | return "model has not been built"; |
---|
| 377 | } |
---|
| 378 | return m_ls.toString(); |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | /** |
---|
| 382 | * Builds a weight function removing instances with an |
---|
| 383 | * abnormally high scaled residual |
---|
| 384 | * |
---|
| 385 | * @throws Exception if weight building fails |
---|
| 386 | */ |
---|
| 387 | private void buildWeight()throws Exception{ |
---|
| 388 | |
---|
| 389 | findResiduals(); |
---|
| 390 | m_scalefactor = 1.4826 * ( 1 + 5 / (m_Data.numInstances() |
---|
| 391 | - m_Data.numAttributes())) |
---|
| 392 | * Math.sqrt(m_bestMedian); |
---|
| 393 | m_weight = new double[m_Residuals.length]; |
---|
| 394 | for (int i = 0; i < m_Residuals.length; i++) |
---|
| 395 | m_weight[i] = ((Math.sqrt(m_Residuals[i])/m_scalefactor < 2.5)?1.0:0.0); |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | /** |
---|
| 399 | * Builds a new LinearRegression without the 'bad' data |
---|
| 400 | * found by buildWeight |
---|
| 401 | * |
---|
| 402 | * @throws Exception if building fails |
---|
| 403 | */ |
---|
| 404 | private void buildRLSRegression()throws Exception{ |
---|
| 405 | |
---|
| 406 | buildWeight(); |
---|
| 407 | m_RLSData = new Instances(m_Data); |
---|
| 408 | int x = 0; |
---|
| 409 | int y = 0; |
---|
| 410 | int n = m_RLSData.numInstances(); |
---|
| 411 | while(y < n){ |
---|
| 412 | if (m_weight[x] == 0){ |
---|
| 413 | m_RLSData.delete(y); |
---|
| 414 | n = m_RLSData.numInstances(); |
---|
| 415 | y--; |
---|
| 416 | } |
---|
| 417 | x++; |
---|
| 418 | y++; |
---|
| 419 | } |
---|
| 420 | if ( m_RLSData.numInstances() == 0){ |
---|
| 421 | System.err.println("rls regression unbuilt"); |
---|
| 422 | m_ls = m_currentRegression; |
---|
| 423 | }else{ |
---|
| 424 | m_ls = new LinearRegression(); |
---|
| 425 | m_ls.setOptions(new String[]{"-S", "1"}); |
---|
| 426 | m_ls.buildClassifier(m_RLSData); |
---|
| 427 | m_currentRegression = m_ls; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | } |
---|
| 431 | |
---|
| 432 | /** |
---|
| 433 | * Finds the kth number in an array |
---|
| 434 | * |
---|
| 435 | * @param a an array of numbers |
---|
| 436 | * @param l left pointer |
---|
| 437 | * @param r right pointer |
---|
| 438 | * @param k position of number to be found |
---|
| 439 | */ |
---|
| 440 | private static void select( double [] a, int l, int r, int k){ |
---|
| 441 | |
---|
| 442 | if (r <=l) return; |
---|
| 443 | int i = partition( a, l, r); |
---|
| 444 | if (i > k) select(a, l, i-1, k); |
---|
| 445 | if (i < k) select(a, i+1, r, k); |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** |
---|
| 449 | * Partitions an array of numbers such that all numbers |
---|
| 450 | * less than that at index r, between indexes l and r |
---|
| 451 | * will have a smaller index and all numbers greater than |
---|
| 452 | * will have a larger index |
---|
| 453 | * |
---|
| 454 | * @param a an array of numbers |
---|
| 455 | * @param l left pointer |
---|
| 456 | * @param r right pointer |
---|
| 457 | * @return final index of number originally at r |
---|
| 458 | */ |
---|
| 459 | private static int partition( double [] a, int l, int r ){ |
---|
| 460 | |
---|
| 461 | int i = l-1, j = r; |
---|
| 462 | double v = a[r], temp; |
---|
| 463 | while(true){ |
---|
| 464 | while(a[++i] < v); |
---|
| 465 | while(v < a[--j]) if(j == l) break; |
---|
| 466 | if(i >= j) break; |
---|
| 467 | temp = a[i]; |
---|
| 468 | a[i] = a[j]; |
---|
| 469 | a[j] = temp; |
---|
| 470 | } |
---|
| 471 | temp = a[i]; |
---|
| 472 | a[i] = a[r]; |
---|
| 473 | a[r] = temp; |
---|
| 474 | return i; |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | /** |
---|
| 478 | * Produces a random sample from m_Data |
---|
| 479 | * in m_SubSample |
---|
| 480 | * |
---|
| 481 | * @param data data from which to take sample |
---|
| 482 | * @throws Exception if an error occurs |
---|
| 483 | */ |
---|
| 484 | private void selectSubSample(Instances data)throws Exception{ |
---|
| 485 | |
---|
| 486 | m_SplitFilter = new RemoveRange(); |
---|
| 487 | m_SplitFilter.setInvertSelection(true); |
---|
| 488 | m_SubSample = data; |
---|
| 489 | m_SplitFilter.setInputFormat(m_SubSample); |
---|
| 490 | m_SplitFilter.setInstancesIndices(selectIndices(m_SubSample)); |
---|
| 491 | m_SubSample = Filter.useFilter(m_SubSample, m_SplitFilter); |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | /** |
---|
| 495 | * Returns a string suitable for passing to RemoveRange consisting |
---|
| 496 | * of m_samplesize indices. |
---|
| 497 | * |
---|
| 498 | * @param data dataset from which to take indicese |
---|
| 499 | * @return string of indices suitable for passing to RemoveRange |
---|
| 500 | */ |
---|
| 501 | private String selectIndices(Instances data){ |
---|
| 502 | |
---|
| 503 | StringBuffer text = new StringBuffer(); |
---|
| 504 | for(int i = 0, x = 0; i < m_samplesize; i++){ |
---|
| 505 | do{x = (int) (m_random.nextDouble() * data.numInstances());} |
---|
| 506 | while(x==0); |
---|
| 507 | text.append(Integer.toString(x)); |
---|
| 508 | if(i < m_samplesize - 1) |
---|
| 509 | text.append(","); |
---|
| 510 | else |
---|
| 511 | text.append("\n"); |
---|
| 512 | } |
---|
| 513 | return text.toString(); |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | /** |
---|
| 517 | * Returns the tip text for this property |
---|
| 518 | * @return tip text for this property suitable for |
---|
| 519 | * displaying in the explorer/experimenter gui |
---|
| 520 | */ |
---|
| 521 | public String sampleSizeTipText() { |
---|
| 522 | return "Set the size of the random samples used to generate the least sqaured " |
---|
| 523 | +"regression functions."; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * sets number of samples |
---|
| 528 | * |
---|
| 529 | * @param samplesize value |
---|
| 530 | */ |
---|
| 531 | public void setSampleSize(int samplesize){ |
---|
| 532 | |
---|
| 533 | m_samplesize = samplesize; |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /** |
---|
| 537 | * gets number of samples |
---|
| 538 | * |
---|
| 539 | * @return value |
---|
| 540 | */ |
---|
| 541 | public int getSampleSize(){ |
---|
| 542 | |
---|
| 543 | return m_samplesize; |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | /** |
---|
| 547 | * Returns the tip text for this property |
---|
| 548 | * @return tip text for this property suitable for |
---|
| 549 | * displaying in the explorer/experimenter gui |
---|
| 550 | */ |
---|
| 551 | public String randomSeedTipText() { |
---|
| 552 | return "Set the seed for selecting random subsamples of the training data."; |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | /** |
---|
| 556 | * Set the seed for the random number generator |
---|
| 557 | * |
---|
| 558 | * @param randomseed the seed |
---|
| 559 | */ |
---|
| 560 | public void setRandomSeed(long randomseed){ |
---|
| 561 | |
---|
| 562 | m_randomseed = randomseed; |
---|
| 563 | } |
---|
| 564 | |
---|
| 565 | /** |
---|
| 566 | * get the seed for the random number generator |
---|
| 567 | * |
---|
| 568 | * @return the seed value |
---|
| 569 | */ |
---|
| 570 | public long getRandomSeed(){ |
---|
| 571 | |
---|
| 572 | return m_randomseed; |
---|
| 573 | } |
---|
| 574 | |
---|
| 575 | /** |
---|
| 576 | * sets whether or not debugging output shouild be printed |
---|
| 577 | * |
---|
| 578 | * @param debug true if debugging output selected |
---|
| 579 | */ |
---|
| 580 | public void setDebug(boolean debug){ |
---|
| 581 | |
---|
| 582 | m_debug = debug; |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | /** |
---|
| 586 | * Returns whether or not debugging output shouild be printed |
---|
| 587 | * |
---|
| 588 | * @return true if debuging output selected |
---|
| 589 | */ |
---|
| 590 | public boolean getDebug(){ |
---|
| 591 | |
---|
| 592 | return m_debug; |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | /** |
---|
| 596 | * Returns an enumeration of all the available options.. |
---|
| 597 | * |
---|
| 598 | * @return an enumeration of all available options. |
---|
| 599 | */ |
---|
| 600 | public Enumeration listOptions(){ |
---|
| 601 | |
---|
| 602 | Vector newVector = new Vector(1); |
---|
| 603 | newVector.addElement(new Option("\tSet sample size\n" |
---|
| 604 | + "\t(default: 4)\n", |
---|
| 605 | "S", 4, "-S <sample size>")); |
---|
| 606 | newVector.addElement(new Option("\tSet the seed used to generate samples\n" |
---|
| 607 | + "\t(default: 0)\n", |
---|
| 608 | "G", 0, "-G <seed>")); |
---|
| 609 | newVector.addElement(new Option("\tProduce debugging output\n" |
---|
| 610 | + "\t(default no debugging output)\n", |
---|
| 611 | "D", 0, "-D")); |
---|
| 612 | |
---|
| 613 | return newVector.elements(); |
---|
| 614 | } |
---|
| 615 | |
---|
| 616 | /** |
---|
| 617 | * Sets the OptionHandler's options using the given list. All options |
---|
| 618 | * will be set (or reset) during this call (i.e. incremental setting |
---|
| 619 | * of options is not possible). |
---|
| 620 | * |
---|
| 621 | <!-- options-start --> |
---|
| 622 | * Valid options are: <p/> |
---|
| 623 | * |
---|
| 624 | * <pre> -S <sample size> |
---|
| 625 | * Set sample size |
---|
| 626 | * (default: 4) |
---|
| 627 | * </pre> |
---|
| 628 | * |
---|
| 629 | * <pre> -G <seed> |
---|
| 630 | * Set the seed used to generate samples |
---|
| 631 | * (default: 0) |
---|
| 632 | * </pre> |
---|
| 633 | * |
---|
| 634 | * <pre> -D |
---|
| 635 | * Produce debugging output |
---|
| 636 | * (default no debugging output) |
---|
| 637 | * </pre> |
---|
| 638 | * |
---|
| 639 | <!-- options-end --> |
---|
| 640 | * |
---|
| 641 | * @param options the list of options as an array of strings |
---|
| 642 | * @throws Exception if an option is not supported |
---|
| 643 | */ |
---|
| 644 | public void setOptions(String[] options) throws Exception { |
---|
| 645 | |
---|
| 646 | String curropt = Utils.getOption('S', options); |
---|
| 647 | if ( curropt.length() != 0){ |
---|
| 648 | setSampleSize(Integer.parseInt(curropt)); |
---|
| 649 | } else |
---|
| 650 | setSampleSize(4); |
---|
| 651 | |
---|
| 652 | curropt = Utils.getOption('G', options); |
---|
| 653 | if ( curropt.length() != 0){ |
---|
| 654 | setRandomSeed(Long.parseLong(curropt)); |
---|
| 655 | } else { |
---|
| 656 | setRandomSeed(0); |
---|
| 657 | } |
---|
| 658 | |
---|
| 659 | setDebug(Utils.getFlag('D', options)); |
---|
| 660 | } |
---|
| 661 | |
---|
| 662 | /** |
---|
| 663 | * Gets the current option settings for the OptionHandler. |
---|
| 664 | * |
---|
| 665 | * @return the list of current option settings as an array of strings |
---|
| 666 | */ |
---|
| 667 | public String[] getOptions(){ |
---|
| 668 | |
---|
| 669 | String options[] = new String[9]; |
---|
| 670 | int current = 0; |
---|
| 671 | |
---|
| 672 | options[current++] = "-S"; |
---|
| 673 | options[current++] = "" + getSampleSize(); |
---|
| 674 | |
---|
| 675 | options[current++] = "-G"; |
---|
| 676 | options[current++] = "" + getRandomSeed(); |
---|
| 677 | |
---|
| 678 | if (getDebug()) { |
---|
| 679 | options[current++] = "-D"; |
---|
| 680 | } |
---|
| 681 | |
---|
| 682 | while (current < options.length) { |
---|
| 683 | options[current++] = ""; |
---|
| 684 | } |
---|
| 685 | |
---|
| 686 | return options; |
---|
| 687 | } |
---|
| 688 | |
---|
| 689 | /** |
---|
| 690 | * Produces the combination nCr |
---|
| 691 | * |
---|
| 692 | * @param n |
---|
| 693 | * @param r |
---|
| 694 | * @return the combination |
---|
| 695 | * @throws Exception if r is greater than n |
---|
| 696 | */ |
---|
| 697 | public static int combinations (int n, int r)throws Exception { |
---|
| 698 | |
---|
| 699 | int c = 1, denom = 1, num = 1, i,orig=r; |
---|
| 700 | if (r > n) throw new Exception("r must be less that or equal to n."); |
---|
| 701 | r = Math.min( r , n - r); |
---|
| 702 | |
---|
| 703 | for (i = 1 ; i <= r; i++){ |
---|
| 704 | |
---|
| 705 | num *= n-i+1; |
---|
| 706 | denom *= i; |
---|
| 707 | } |
---|
| 708 | |
---|
| 709 | c = num / denom; |
---|
| 710 | if(false) |
---|
| 711 | System.out.println( "n: "+n+" r: "+orig+" num: "+num+ |
---|
| 712 | " denom: "+denom+" c: "+c); |
---|
| 713 | return c; |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | /** |
---|
| 717 | * Returns the revision string. |
---|
| 718 | * |
---|
| 719 | * @return the revision |
---|
| 720 | */ |
---|
| 721 | public String getRevision() { |
---|
| 722 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 723 | } |
---|
| 724 | |
---|
| 725 | /** |
---|
| 726 | * generate a Linear regression predictor for testing |
---|
| 727 | * |
---|
| 728 | * @param argv options |
---|
| 729 | */ |
---|
| 730 | public static void main(String [] argv){ |
---|
| 731 | runClassifier(new LeastMedSq(), argv); |
---|
| 732 | } // main |
---|
| 733 | } // lmr |
---|