[4] | 1 | /** |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * GaussianProcesses.java |
---|
| 19 | * Copyright (C) 2005-2009 University of Waikato |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.functions; |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.ConditionalDensityEstimator; |
---|
| 28 | import weka.classifiers.Evaluation; |
---|
| 29 | import weka.classifiers.IntervalEstimator; |
---|
| 30 | import weka.classifiers.functions.supportVector.CachedKernel; |
---|
| 31 | import weka.classifiers.functions.supportVector.Kernel; |
---|
| 32 | import weka.classifiers.functions.supportVector.PolyKernel; |
---|
| 33 | import weka.classifiers.functions.supportVector.RBFKernel; |
---|
| 34 | import weka.core.Capabilities; |
---|
| 35 | import weka.core.Instance; |
---|
| 36 | import weka.core.Instances; |
---|
| 37 | import weka.core.matrix.Matrix; |
---|
| 38 | import weka.core.Option; |
---|
| 39 | import weka.core.OptionHandler; |
---|
| 40 | import weka.core.SelectedTag; |
---|
| 41 | import weka.core.Statistics; |
---|
| 42 | import weka.core.Tag; |
---|
| 43 | import weka.core.TechnicalInformation; |
---|
| 44 | import weka.core.TechnicalInformationHandler; |
---|
| 45 | import weka.core.WeightedInstancesHandler; |
---|
| 46 | import weka.core.Utils; |
---|
| 47 | import weka.core.Capabilities.Capability; |
---|
| 48 | import weka.core.TechnicalInformation.Field; |
---|
| 49 | import weka.core.TechnicalInformation.Type; |
---|
| 50 | import weka.filters.Filter; |
---|
| 51 | import weka.filters.unsupervised.attribute.NominalToBinary; |
---|
| 52 | import weka.filters.unsupervised.attribute.Normalize; |
---|
| 53 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 54 | import weka.filters.unsupervised.attribute.Standardize; |
---|
| 55 | |
---|
| 56 | import java.io.FileReader; |
---|
| 57 | import java.io.Serializable; |
---|
| 58 | import java.util.Enumeration; |
---|
| 59 | import java.util.Vector; |
---|
| 60 | |
---|
| 61 | /** |
---|
| 62 | * <!-- globalinfo-start --> |
---|
| 63 | * Implements Gaussian processes for |
---|
| 64 | * regression without hyperparameter-tuning. To make choosing an |
---|
| 65 | * appropriate noise level easier, this implementation applies |
---|
| 66 | * normalization/standardization to the target attribute as well (if |
---|
| 67 | * normalization/standardizaton is turned on). Missing values |
---|
| 68 | * are replaced by the global mean/mode. Nominal attributes are |
---|
| 69 | * converted to binary ones. |
---|
| 70 | * <!-- globalinfo-end --> |
---|
| 71 | * |
---|
| 72 | * <!-- technical-bibtex-start --> BibTeX: |
---|
| 73 | * |
---|
| 74 | * <pre> |
---|
| 75 | * @misc{Mackay1998, |
---|
| 76 | * address = {Dept. of Physics, Cambridge University, UK}, |
---|
| 77 | * author = {David J.C. Mackay}, |
---|
| 78 | * title = {Introduction to Gaussian Processes}, |
---|
| 79 | * year = {1998}, |
---|
| 80 | * PS = {http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz} |
---|
| 81 | * } |
---|
| 82 | * </pre> |
---|
| 83 | * |
---|
| 84 | * <p/> <!-- technical-bibtex-end --> |
---|
| 85 | * |
---|
| 86 | * <!-- options-start --> Valid options are: <p/> |
---|
| 87 | * |
---|
| 88 | * <pre> |
---|
| 89 | * -D |
---|
| 90 | * If set, classifier is run in debug mode and |
---|
| 91 | * may output additional info to the console |
---|
| 92 | * </pre> |
---|
| 93 | * |
---|
| 94 | * <pre> |
---|
| 95 | * -L <double> |
---|
| 96 | * Level of Gaussian Noise. (default 0.1) |
---|
| 97 | * </pre> |
---|
| 98 | * |
---|
| 99 | * <pre> |
---|
| 100 | * -N |
---|
| 101 | * Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize) |
---|
| 102 | * </pre> |
---|
| 103 | * |
---|
| 104 | * <pre> |
---|
| 105 | * -K <classname and parameters> |
---|
| 106 | * The Kernel to use. |
---|
| 107 | * (default: weka.classifiers.functions.supportVector.PolyKernel) |
---|
| 108 | * </pre> |
---|
| 109 | * |
---|
| 110 | * <pre> |
---|
| 111 | * |
---|
| 112 | * Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel: |
---|
| 113 | * </pre> |
---|
| 114 | * |
---|
| 115 | * <pre> |
---|
| 116 | * -D |
---|
| 117 | * Enables debugging output (if available) to be printed. |
---|
| 118 | * (default: off) |
---|
| 119 | * </pre> |
---|
| 120 | * |
---|
| 121 | * <pre> |
---|
| 122 | * -no-checks |
---|
| 123 | * Turns off all checks - use with caution! |
---|
| 124 | * (default: checks on) |
---|
| 125 | * </pre> |
---|
| 126 | * |
---|
| 127 | * <pre> |
---|
| 128 | * -C <num> |
---|
| 129 | * The size of the cache (a prime number). |
---|
| 130 | * (default: 250007) |
---|
| 131 | * </pre> |
---|
| 132 | * |
---|
| 133 | * <pre> |
---|
| 134 | * -G <num> |
---|
| 135 | * The Gamma parameter. |
---|
| 136 | * (default: 0.01) |
---|
| 137 | * </pre> |
---|
| 138 | * |
---|
| 139 | * <!-- options-end --> |
---|
| 140 | * |
---|
| 141 | * @author Kurt Driessens (kurtd@cs.waikato.ac.nz) |
---|
| 142 | * @author Remco Bouckaert (remco@cs.waikato.ac.nz) |
---|
| 143 | * @version $Revision: 5952 $ |
---|
| 144 | */ |
---|
| 145 | public class GaussianProcesses extends AbstractClassifier implements OptionHandler, IntervalEstimator, |
---|
| 146 | ConditionalDensityEstimator, |
---|
| 147 | TechnicalInformationHandler, WeightedInstancesHandler { |
---|
| 148 | |
---|
| 149 | /** for serialization */ |
---|
| 150 | static final long serialVersionUID = -8620066949967678545L; |
---|
| 151 | |
---|
| 152 | /** The filter used to make attributes numeric. */ |
---|
| 153 | protected NominalToBinary m_NominalToBinary; |
---|
| 154 | |
---|
| 155 | /** normalizes the data */ |
---|
| 156 | public static final int FILTER_NORMALIZE = 0; |
---|
| 157 | |
---|
| 158 | /** standardizes the data */ |
---|
| 159 | public static final int FILTER_STANDARDIZE = 1; |
---|
| 160 | |
---|
| 161 | /** no filter */ |
---|
| 162 | public static final int FILTER_NONE = 2; |
---|
| 163 | |
---|
| 164 | /** The filter to apply to the training data */ |
---|
| 165 | public static final Tag[] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"), |
---|
| 166 | new Tag(FILTER_STANDARDIZE, "Standardize training data"), |
---|
| 167 | new Tag(FILTER_NONE, "No normalization/standardization"), }; |
---|
| 168 | |
---|
| 169 | /** The filter used to standardize/normalize all values. */ |
---|
| 170 | protected Filter m_Filter = null; |
---|
| 171 | |
---|
| 172 | /** Whether to normalize/standardize/neither */ |
---|
| 173 | protected int m_filterType = FILTER_NORMALIZE; |
---|
| 174 | |
---|
| 175 | /** The filter used to get rid of missing values. */ |
---|
| 176 | protected ReplaceMissingValues m_Missing; |
---|
| 177 | |
---|
| 178 | /** |
---|
| 179 | * Turn off all checks and conversions? Turning them off assumes that data |
---|
| 180 | * is purely numeric, doesn't contain any missing values, and has a numeric |
---|
| 181 | * class. |
---|
| 182 | */ |
---|
| 183 | protected boolean m_checksTurnedOff = false; |
---|
| 184 | |
---|
| 185 | /** Gaussian Noise Value. */ |
---|
| 186 | protected double m_delta = 1; |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * The parameters of the linear transforamtion realized by the filter on the |
---|
| 190 | * class attribute |
---|
| 191 | */ |
---|
| 192 | protected double m_Alin; |
---|
| 193 | protected double m_Blin; |
---|
| 194 | |
---|
| 195 | /** Kernel to use * */ |
---|
| 196 | protected Kernel m_kernel = new PolyKernel(); |
---|
| 197 | |
---|
| 198 | /** The number of training instances */ |
---|
| 199 | protected int m_NumTrain = 0; |
---|
| 200 | |
---|
| 201 | /** The training data. */ |
---|
| 202 | protected double m_avg_target; |
---|
| 203 | |
---|
| 204 | /** (negative) covariance matrix in symmetric matrix representation **/ |
---|
| 205 | public double[][] m_L; |
---|
| 206 | |
---|
| 207 | /** The vector of target values. */ |
---|
| 208 | protected Matrix m_t; |
---|
| 209 | |
---|
| 210 | /** |
---|
| 211 | * Returns a string describing classifier |
---|
| 212 | * |
---|
| 213 | * @return a description suitable for displaying in the |
---|
| 214 | * explorer/experimenter gui |
---|
| 215 | */ |
---|
| 216 | public String globalInfo() { |
---|
| 217 | |
---|
| 218 | return " Implements Gaussian processes for " |
---|
| 219 | + "regression without hyperparameter-tuning. To make choosing an " |
---|
| 220 | + "appropriate noise level easier, this implementation applies " |
---|
| 221 | + "normalization/standardization to the target attribute as well " |
---|
| 222 | + "as the other attributes (if " |
---|
| 223 | + " normalization/standardizaton is turned on). Missing values " |
---|
| 224 | + "are replaced by the global mean/mode. Nominal attributes are " |
---|
| 225 | + "converted to binary ones. Note that kernel caching is turned off " |
---|
| 226 | + "if the kernel used implements CachedKernel."; |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | /** |
---|
| 230 | * Returns an instance of a TechnicalInformation object, containing detailed |
---|
| 231 | * information about the technical background of this class, e.g., paper |
---|
| 232 | * reference or book this class is based on. |
---|
| 233 | * |
---|
| 234 | * @return the technical information about this class |
---|
| 235 | */ |
---|
| 236 | public TechnicalInformation getTechnicalInformation() { |
---|
| 237 | TechnicalInformation result; |
---|
| 238 | |
---|
| 239 | result = new TechnicalInformation(Type.MISC); |
---|
| 240 | result.setValue(Field.AUTHOR, "David J.C. Mackay"); |
---|
| 241 | result.setValue(Field.YEAR, "1998"); |
---|
| 242 | result.setValue(Field.TITLE, "Introduction to Gaussian Processes"); |
---|
| 243 | result.setValue(Field.ADDRESS, "Dept. of Physics, Cambridge University, UK"); |
---|
| 244 | result.setValue(Field.PS, "http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz"); |
---|
| 245 | |
---|
| 246 | return result; |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | /** |
---|
| 250 | * Returns default capabilities of the classifier. |
---|
| 251 | * |
---|
| 252 | * @return the capabilities of this classifier |
---|
| 253 | */ |
---|
| 254 | public Capabilities getCapabilities() { |
---|
| 255 | Capabilities result = getKernel().getCapabilities(); |
---|
| 256 | result.setOwner(this); |
---|
| 257 | |
---|
| 258 | // attribute |
---|
| 259 | result.enableAllAttributeDependencies(); |
---|
| 260 | // with NominalToBinary we can also handle nominal attributes, but only |
---|
| 261 | // if the kernel can handle numeric attributes |
---|
| 262 | if (result.handles(Capability.NUMERIC_ATTRIBUTES)) |
---|
| 263 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 264 | result.enable(Capability.MISSING_VALUES); |
---|
| 265 | |
---|
| 266 | // class |
---|
| 267 | result.disableAllClasses(); |
---|
| 268 | result.disableAllClassDependencies(); |
---|
| 269 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 270 | result.enable(Capability.DATE_CLASS); |
---|
| 271 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 272 | |
---|
| 273 | return result; |
---|
| 274 | } |
---|
| 275 | |
---|
| 276 | /** |
---|
| 277 | * Method for building the classifier. |
---|
| 278 | * |
---|
| 279 | * @param insts |
---|
| 280 | * the set of training instances |
---|
| 281 | * @throws Exception |
---|
| 282 | * if the classifier can't be built successfully |
---|
| 283 | */ |
---|
| 284 | public void buildClassifier(Instances insts) throws Exception { |
---|
| 285 | |
---|
| 286 | /* check the set of training instances */ |
---|
| 287 | if (!m_checksTurnedOff) { |
---|
| 288 | // can classifier handle the data? |
---|
| 289 | getCapabilities().testWithFail(insts); |
---|
| 290 | |
---|
| 291 | // remove instances with missing class |
---|
| 292 | insts = new Instances(insts); |
---|
| 293 | insts.deleteWithMissingClass(); |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | if (!m_checksTurnedOff) { |
---|
| 297 | m_Missing = new ReplaceMissingValues(); |
---|
| 298 | m_Missing.setInputFormat(insts); |
---|
| 299 | insts = Filter.useFilter(insts, m_Missing); |
---|
| 300 | } else { |
---|
| 301 | m_Missing = null; |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | if (getCapabilities().handles(Capability.NUMERIC_ATTRIBUTES)) { |
---|
| 305 | boolean onlyNumeric = true; |
---|
| 306 | if (!m_checksTurnedOff) { |
---|
| 307 | for (int i = 0; i < insts.numAttributes(); i++) { |
---|
| 308 | if (i != insts.classIndex()) { |
---|
| 309 | if (!insts.attribute(i).isNumeric()) { |
---|
| 310 | onlyNumeric = false; |
---|
| 311 | break; |
---|
| 312 | } |
---|
| 313 | } |
---|
| 314 | } |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | if (!onlyNumeric) { |
---|
| 318 | m_NominalToBinary = new NominalToBinary(); |
---|
| 319 | m_NominalToBinary.setInputFormat(insts); |
---|
| 320 | insts = Filter.useFilter(insts, m_NominalToBinary); |
---|
| 321 | } else { |
---|
| 322 | m_NominalToBinary = null; |
---|
| 323 | } |
---|
| 324 | } else { |
---|
| 325 | m_NominalToBinary = null; |
---|
| 326 | } |
---|
| 327 | |
---|
| 328 | if (m_filterType == FILTER_STANDARDIZE) { |
---|
| 329 | m_Filter = new Standardize(); |
---|
| 330 | ((Standardize)m_Filter).setIgnoreClass(true); |
---|
| 331 | m_Filter.setInputFormat(insts); |
---|
| 332 | insts = Filter.useFilter(insts, m_Filter); |
---|
| 333 | } else if (m_filterType == FILTER_NORMALIZE) { |
---|
| 334 | m_Filter = new Normalize(); |
---|
| 335 | ((Normalize)m_Filter).setIgnoreClass(true); |
---|
| 336 | m_Filter.setInputFormat(insts); |
---|
| 337 | insts = Filter.useFilter(insts, m_Filter); |
---|
| 338 | } else { |
---|
| 339 | m_Filter = null; |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | m_NumTrain = insts.numInstances(); |
---|
| 343 | |
---|
| 344 | // determine which linear transformation has been |
---|
| 345 | // applied to the class by the filter |
---|
| 346 | if (m_Filter != null) { |
---|
| 347 | Instance witness = (Instance) insts.instance(0).copy(); |
---|
| 348 | witness.setValue(insts.classIndex(), 0); |
---|
| 349 | m_Filter.input(witness); |
---|
| 350 | m_Filter.batchFinished(); |
---|
| 351 | Instance res = m_Filter.output(); |
---|
| 352 | m_Blin = res.value(insts.classIndex()); |
---|
| 353 | witness.setValue(insts.classIndex(), 1); |
---|
| 354 | m_Filter.input(witness); |
---|
| 355 | m_Filter.batchFinished(); |
---|
| 356 | res = m_Filter.output(); |
---|
| 357 | m_Alin = res.value(insts.classIndex()) - m_Blin; |
---|
| 358 | } else { |
---|
| 359 | m_Alin = 1.0; |
---|
| 360 | m_Blin = 0.0; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | // Initialize kernel |
---|
| 364 | try { |
---|
| 365 | CachedKernel cachedKernel = (CachedKernel) m_kernel; |
---|
| 366 | cachedKernel.setCacheSize(0); |
---|
| 367 | } catch (Exception e) { |
---|
| 368 | // ignore |
---|
| 369 | } |
---|
| 370 | m_kernel.buildKernel(insts); |
---|
| 371 | |
---|
| 372 | // Compute average target value |
---|
| 373 | double sum = 0.0; |
---|
| 374 | for (int i = 0; i < insts.numInstances(); i++) { |
---|
| 375 | sum += insts.instance(i).classValue(); |
---|
| 376 | } |
---|
| 377 | m_avg_target = sum / insts.numInstances(); |
---|
| 378 | |
---|
| 379 | // initialize kernel matrix/covariance matrix |
---|
| 380 | int n = insts.numInstances(); |
---|
| 381 | m_L = new double[n][]; |
---|
| 382 | for (int i = 0; i < n; i++) { |
---|
| 383 | m_L[i] = new double[i+1]; |
---|
| 384 | } |
---|
| 385 | double kv = 0; |
---|
| 386 | for (int i = 0; i < n; i++) { |
---|
| 387 | for (int j = 0; j < i; j++) { |
---|
| 388 | kv = m_kernel.eval(i, j, insts.instance(i)); |
---|
| 389 | m_L[i][j] = kv; |
---|
| 390 | } |
---|
| 391 | kv = m_kernel.eval(i, i, insts.instance(i)); |
---|
| 392 | m_L[i][i] = kv + m_delta * m_delta; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | // Calculate inverse matrix exploiting symmetry of covariance matrix |
---|
| 396 | // NB this replaces the kernel matrix with (the negative of) its inverse and does |
---|
| 397 | // not require any extra memory for a solution matrix |
---|
| 398 | double [] tmprow = new double [n]; |
---|
| 399 | double tmp2 = 0, tmp = 0; |
---|
| 400 | for (int i = 0; i < n; i++) { |
---|
| 401 | tmp = -m_L[i][i]; |
---|
| 402 | m_L[i][i] = 1.0 / tmp; |
---|
| 403 | for (int j = 0; j < n; j++) { |
---|
| 404 | if (j != i) { |
---|
| 405 | if (j < i) { |
---|
| 406 | tmprow[j] = m_L[i][j]; |
---|
| 407 | m_L[i][j] /= tmp; |
---|
| 408 | tmp2 = m_L[i][j]; |
---|
| 409 | m_L[j][j] += tmp2 * tmp2 * tmp; |
---|
| 410 | } else if (j > i) { |
---|
| 411 | tmprow[j] = m_L[j][i]; |
---|
| 412 | m_L[j][i] /= tmp; |
---|
| 413 | tmp2 = m_L[j][i]; |
---|
| 414 | m_L[j][j] += tmp2 * tmp2 * tmp; |
---|
| 415 | } |
---|
| 416 | } |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | for (int j = 0; j < n; j++) { |
---|
| 420 | if (j != i) { |
---|
| 421 | if (i < j) { |
---|
| 422 | for (int k = 0; k < i; k++) { |
---|
| 423 | m_L[j][k] += tmprow[j] * m_L[i][k]; |
---|
| 424 | } |
---|
| 425 | } else { |
---|
| 426 | for (int k = 0; k < j; k++) { |
---|
| 427 | m_L[j][k] += tmprow[j] * m_L[i][k]; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | } |
---|
| 431 | for (int k = i + 1; k < j; k++) { |
---|
| 432 | m_L[j][k] += tmprow[j] * m_L[k][i]; |
---|
| 433 | } |
---|
| 434 | } |
---|
| 435 | } |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | m_t = new Matrix(insts.numInstances(), 1); |
---|
| 439 | double [] tt = new double[n]; |
---|
| 440 | for (int i = 0; i < n; i++) { |
---|
| 441 | tt[i] = insts.instance(i).classValue() - m_avg_target; |
---|
| 442 | } |
---|
| 443 | |
---|
| 444 | // calculate m_t = tt . m_L |
---|
| 445 | for (int i = 0; i < n; i++) { |
---|
| 446 | double s = 0; |
---|
| 447 | for (int k = 0; k < i; k++) { |
---|
| 448 | s -= m_L[i][k] * tt[k]; |
---|
| 449 | } |
---|
| 450 | for (int k = i; k < n; k++) { |
---|
| 451 | s -= m_L[k][i] * tt[k]; |
---|
| 452 | } |
---|
| 453 | m_t.set(i, 0, s); |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | } // buildClassifier |
---|
| 457 | |
---|
| 458 | /** |
---|
| 459 | * Classifies a given instance. |
---|
| 460 | * |
---|
| 461 | * @param inst |
---|
| 462 | * the instance to be classified |
---|
| 463 | * @return the classification |
---|
| 464 | * @throws Exception |
---|
| 465 | * if instance could not be classified successfully |
---|
| 466 | */ |
---|
| 467 | public double classifyInstance(Instance inst) throws Exception { |
---|
| 468 | |
---|
| 469 | // Filter instance |
---|
| 470 | inst = filterInstance(inst); |
---|
| 471 | |
---|
| 472 | // Build K vector |
---|
| 473 | Matrix k = new Matrix(m_NumTrain, 1); |
---|
| 474 | for (int i = 0; i < m_NumTrain; i++) { |
---|
| 475 | k.set(i, 0, m_kernel.eval(-1, i, inst)); |
---|
| 476 | } |
---|
| 477 | |
---|
| 478 | double result = k.transpose().times(m_t).get(0, 0) + m_avg_target; |
---|
| 479 | result = (result - m_Blin) / m_Alin; |
---|
| 480 | |
---|
| 481 | return result; |
---|
| 482 | |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | /** |
---|
| 486 | * Filters an instance. |
---|
| 487 | */ |
---|
| 488 | protected Instance filterInstance(Instance inst) throws Exception { |
---|
| 489 | |
---|
| 490 | if (!m_checksTurnedOff) { |
---|
| 491 | m_Missing.input(inst); |
---|
| 492 | m_Missing.batchFinished(); |
---|
| 493 | inst = m_Missing.output(); |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | if (m_NominalToBinary != null) { |
---|
| 497 | m_NominalToBinary.input(inst); |
---|
| 498 | m_NominalToBinary.batchFinished(); |
---|
| 499 | inst = m_NominalToBinary.output(); |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | if (m_Filter != null) { |
---|
| 503 | m_Filter.input(inst); |
---|
| 504 | m_Filter.batchFinished(); |
---|
| 505 | inst = m_Filter.output(); |
---|
| 506 | } |
---|
| 507 | return inst; |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | /** |
---|
| 511 | * Computes standard deviation for given instance, without |
---|
| 512 | * transforming target back into original space. |
---|
| 513 | */ |
---|
| 514 | protected double computeStdDev(Instance inst, Matrix k) throws Exception { |
---|
| 515 | |
---|
| 516 | double kappa = m_kernel.eval(-1, -1, inst) + m_delta * m_delta; |
---|
| 517 | |
---|
| 518 | double s = 0; |
---|
| 519 | int n = m_L.length; |
---|
| 520 | for (int i = 0; i < n; i++) { |
---|
| 521 | double t = 0; |
---|
| 522 | for (int j = 0; j < n; j++) { |
---|
| 523 | t -= k.get(j,0) * (i>j? m_L[i][j] : m_L[j][i]); |
---|
| 524 | } |
---|
| 525 | s += t * k.get(i,0); |
---|
| 526 | } |
---|
| 527 | |
---|
| 528 | double sigma = m_delta; |
---|
| 529 | if (kappa > s) { |
---|
| 530 | sigma = Math.sqrt(kappa - s); |
---|
| 531 | } |
---|
| 532 | |
---|
| 533 | return sigma; |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /** |
---|
| 537 | * Computes a prediction interval for the given instance and confidence |
---|
| 538 | * level. |
---|
| 539 | * |
---|
| 540 | * @param inst |
---|
| 541 | * the instance to make the prediction for |
---|
| 542 | * @param confidenceLevel |
---|
| 543 | * the percentage of cases the interval should cover |
---|
| 544 | * @return a 1*2 array that contains the boundaries of the interval |
---|
| 545 | * @throws Exception |
---|
| 546 | * if interval could not be estimated successfully |
---|
| 547 | */ |
---|
| 548 | public double[][] predictIntervals(Instance inst, double confidenceLevel) throws Exception { |
---|
| 549 | |
---|
| 550 | inst = filterInstance(inst); |
---|
| 551 | |
---|
| 552 | // Build K vector (and Kappa) |
---|
| 553 | Matrix k = new Matrix(m_NumTrain, 1); |
---|
| 554 | for (int i = 0; i < m_NumTrain; i++) { |
---|
| 555 | k.set(i, 0, m_kernel.eval(-1, i, inst)); |
---|
| 556 | } |
---|
| 557 | |
---|
| 558 | double estimate = k.transpose().times(m_t).get(0, 0) + m_avg_target; |
---|
| 559 | |
---|
| 560 | double sigma = computeStdDev(inst, k); |
---|
| 561 | |
---|
| 562 | confidenceLevel = 1.0 - ((1.0 - confidenceLevel) / 2.0); |
---|
| 563 | |
---|
| 564 | double z = Statistics.normalInverse(confidenceLevel); |
---|
| 565 | |
---|
| 566 | double[][] interval = new double[1][2]; |
---|
| 567 | |
---|
| 568 | interval[0][0] = estimate - z * sigma; |
---|
| 569 | interval[0][1] = estimate + z * sigma; |
---|
| 570 | |
---|
| 571 | interval[0][0] = (interval[0][0] - m_Blin) / m_Alin; |
---|
| 572 | interval[0][1] = (interval[0][1] - m_Blin) / m_Alin; |
---|
| 573 | |
---|
| 574 | return interval; |
---|
| 575 | |
---|
| 576 | } |
---|
| 577 | |
---|
| 578 | /** |
---|
| 579 | * Gives standard deviation of the prediction at the given instance. |
---|
| 580 | * |
---|
| 581 | * @param inst |
---|
| 582 | * the instance to get the standard deviation for |
---|
| 583 | * @return the standard deviation |
---|
| 584 | * @throws Exception |
---|
| 585 | * if computation fails |
---|
| 586 | */ |
---|
| 587 | public double getStandardDeviation(Instance inst) throws Exception { |
---|
| 588 | |
---|
| 589 | inst = filterInstance(inst); |
---|
| 590 | |
---|
| 591 | // Build K vector (and Kappa) |
---|
| 592 | Matrix k = new Matrix(m_NumTrain, 1); |
---|
| 593 | for (int i = 0; i < m_NumTrain; i++) { |
---|
| 594 | k.set(i, 0, m_kernel.eval(-1, i, inst)); |
---|
| 595 | } |
---|
| 596 | |
---|
| 597 | return computeStdDev(inst, k) / m_Alin; |
---|
| 598 | } |
---|
| 599 | |
---|
| 600 | /** |
---|
| 601 | * Returns natural logarithm of density estimate for given value based on given instance. |
---|
| 602 | * |
---|
| 603 | * @param instance the instance to make the prediction for. |
---|
| 604 | * @param value the value to make the prediction for. |
---|
| 605 | * @return the natural logarithm of the density estimate |
---|
| 606 | * @exception Exception if the density cannot be computed |
---|
| 607 | */ |
---|
| 608 | public double logDensity(Instance inst, double value) throws Exception { |
---|
| 609 | |
---|
| 610 | inst = filterInstance(inst); |
---|
| 611 | |
---|
| 612 | // Build K vector (and Kappa) |
---|
| 613 | Matrix k = new Matrix(m_NumTrain, 1); |
---|
| 614 | for (int i = 0; i < m_NumTrain; i++) { |
---|
| 615 | k.set(i, 0, m_kernel.eval(-1, i, inst)); |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | double estimate = k.transpose().times(m_t).get(0, 0) + m_avg_target; |
---|
| 619 | |
---|
| 620 | double sigma = computeStdDev(inst, k); |
---|
| 621 | |
---|
| 622 | // transform to GP space |
---|
| 623 | value = value * m_Alin + m_Blin; |
---|
| 624 | // center around estimate |
---|
| 625 | value = value - estimate; |
---|
| 626 | double z = -Math.log(sigma * Math.sqrt(2 * Math.PI)) |
---|
| 627 | - value * value /(2.0*sigma*sigma); |
---|
| 628 | |
---|
| 629 | return z + Math.log(m_Alin); |
---|
| 630 | } |
---|
| 631 | |
---|
| 632 | /** |
---|
| 633 | * Returns an enumeration describing the available options. |
---|
| 634 | * |
---|
| 635 | * @return an enumeration of all the available options. |
---|
| 636 | */ |
---|
| 637 | public Enumeration listOptions() { |
---|
| 638 | |
---|
| 639 | Vector<Option> result = new Vector<Option>(); |
---|
| 640 | |
---|
| 641 | Enumeration enm = super.listOptions(); |
---|
| 642 | while (enm.hasMoreElements()) |
---|
| 643 | result.addElement((Option)enm.nextElement()); |
---|
| 644 | |
---|
| 645 | result.addElement(new Option("\tLevel of Gaussian Noise wrt transformed target." + " (default 1)", "L", 1, "-L <double>")); |
---|
| 646 | |
---|
| 647 | result.addElement(new Option("\tWhether to 0=normalize/1=standardize/2=neither. " + "(default 0=normalize)", |
---|
| 648 | "N", 1, "-N")); |
---|
| 649 | |
---|
| 650 | result.addElement(new Option("\tThe Kernel to use.\n" |
---|
| 651 | + "\t(default: weka.classifiers.functions.supportVector.PolyKernel)", "K", 1, |
---|
| 652 | "-K <classname and parameters>")); |
---|
| 653 | |
---|
| 654 | result.addElement(new Option("", "", 0, "\nOptions specific to kernel " + getKernel().getClass().getName() |
---|
| 655 | + ":")); |
---|
| 656 | |
---|
| 657 | enm = ((OptionHandler) getKernel()).listOptions(); |
---|
| 658 | while (enm.hasMoreElements()) |
---|
| 659 | result.addElement((Option)enm.nextElement()); |
---|
| 660 | |
---|
| 661 | return result.elements(); |
---|
| 662 | } |
---|
| 663 | |
---|
| 664 | /** |
---|
| 665 | * Parses a given list of options. <p/> |
---|
| 666 | * |
---|
| 667 | * <!-- options-start --> Valid options are: <p/> |
---|
| 668 | * |
---|
| 669 | * <pre> |
---|
| 670 | * -D |
---|
| 671 | * If set, classifier is run in debug mode and |
---|
| 672 | * may output additional info to the console |
---|
| 673 | * </pre> |
---|
| 674 | * |
---|
| 675 | * <pre> |
---|
| 676 | * -L <double> |
---|
| 677 | * Level of Gaussian Noise. (default 0.1) |
---|
| 678 | * </pre> |
---|
| 679 | * |
---|
| 680 | * <pre> |
---|
| 681 | * -M <double> |
---|
| 682 | * Level of Gaussian Noise for the class. (default 0.1) |
---|
| 683 | * </pre> |
---|
| 684 | * |
---|
| 685 | * <pre> |
---|
| 686 | * -N |
---|
| 687 | * Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize) |
---|
| 688 | * </pre> |
---|
| 689 | * |
---|
| 690 | * <pre> |
---|
| 691 | * -K <classname and parameters> |
---|
| 692 | * The Kernel to use. |
---|
| 693 | * (default: weka.classifiers.functions.supportVector.PolyKernel) |
---|
| 694 | * </pre> |
---|
| 695 | * |
---|
| 696 | * <pre> |
---|
| 697 | * |
---|
| 698 | * Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel: |
---|
| 699 | * </pre> |
---|
| 700 | * |
---|
| 701 | * <pre> |
---|
| 702 | * -D |
---|
| 703 | * Enables debugging output (if available) to be printed. |
---|
| 704 | * (default: off) |
---|
| 705 | * </pre> |
---|
| 706 | * |
---|
| 707 | * <pre> |
---|
| 708 | * -no-checks |
---|
| 709 | * Turns off all checks - use with caution! |
---|
| 710 | * (default: checks on) |
---|
| 711 | * </pre> |
---|
| 712 | * |
---|
| 713 | * <pre> |
---|
| 714 | * -C <num> |
---|
| 715 | * The size of the cache (a prime number). |
---|
| 716 | * (default: 250007) |
---|
| 717 | * </pre> |
---|
| 718 | * |
---|
| 719 | * <pre> |
---|
| 720 | * -G <num> |
---|
| 721 | * The Gamma parameter. |
---|
| 722 | * (default: 0.01) |
---|
| 723 | * </pre> |
---|
| 724 | * |
---|
| 725 | * <!-- options-end --> |
---|
| 726 | * |
---|
| 727 | * @param options |
---|
| 728 | * the list of options as an array of strings |
---|
| 729 | * @throws Exception |
---|
| 730 | * if an option is not supported |
---|
| 731 | */ |
---|
| 732 | public void setOptions(String[] options) throws Exception { |
---|
| 733 | String tmpStr; |
---|
| 734 | String[] tmpOptions; |
---|
| 735 | |
---|
| 736 | tmpStr = Utils.getOption('L', options); |
---|
| 737 | if (tmpStr.length() != 0) |
---|
| 738 | setNoise(Double.parseDouble(tmpStr)); |
---|
| 739 | else |
---|
| 740 | setNoise(1); |
---|
| 741 | |
---|
| 742 | tmpStr = Utils.getOption('N', options); |
---|
| 743 | if (tmpStr.length() != 0) |
---|
| 744 | setFilterType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_FILTER)); |
---|
| 745 | else |
---|
| 746 | setFilterType(new SelectedTag(FILTER_NORMALIZE, TAGS_FILTER)); |
---|
| 747 | |
---|
| 748 | tmpStr = Utils.getOption('K', options); |
---|
| 749 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
| 750 | if (tmpOptions.length != 0) { |
---|
| 751 | tmpStr = tmpOptions[0]; |
---|
| 752 | tmpOptions[0] = ""; |
---|
| 753 | setKernel(Kernel.forName(tmpStr, tmpOptions)); |
---|
| 754 | } |
---|
| 755 | |
---|
| 756 | super.setOptions(options); |
---|
| 757 | } |
---|
| 758 | |
---|
| 759 | /** |
---|
| 760 | * Gets the current settings of the classifier. |
---|
| 761 | * |
---|
| 762 | * @return an array of strings suitable for passing to setOptions |
---|
| 763 | */ |
---|
| 764 | public String[] getOptions() { |
---|
| 765 | int i; |
---|
| 766 | Vector<String> result; |
---|
| 767 | String[] options; |
---|
| 768 | |
---|
| 769 | result = new Vector<String>(); |
---|
| 770 | options = super.getOptions(); |
---|
| 771 | for (i = 0; i < options.length; i++) |
---|
| 772 | result.addElement(options[i]); |
---|
| 773 | |
---|
| 774 | result.addElement("-L"); |
---|
| 775 | result.addElement("" + getNoise()); |
---|
| 776 | |
---|
| 777 | result.addElement("-N"); |
---|
| 778 | result.addElement("" + m_filterType); |
---|
| 779 | |
---|
| 780 | result.addElement("-K"); |
---|
| 781 | result.addElement("" + m_kernel.getClass().getName() + " " + Utils.joinOptions(m_kernel.getOptions())); |
---|
| 782 | |
---|
| 783 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 784 | } |
---|
| 785 | |
---|
| 786 | /** |
---|
| 787 | * Returns the tip text for this property |
---|
| 788 | * |
---|
| 789 | * @return tip text for this property suitable for displaying in the |
---|
| 790 | * explorer/experimenter gui |
---|
| 791 | */ |
---|
| 792 | public String kernelTipText() { |
---|
| 793 | return "The kernel to use."; |
---|
| 794 | } |
---|
| 795 | |
---|
| 796 | /** |
---|
| 797 | * Gets the kernel to use. |
---|
| 798 | * |
---|
| 799 | * @return the kernel |
---|
| 800 | */ |
---|
| 801 | public Kernel getKernel() { |
---|
| 802 | return m_kernel; |
---|
| 803 | } |
---|
| 804 | |
---|
| 805 | /** |
---|
| 806 | * Sets the kernel to use. |
---|
| 807 | * |
---|
| 808 | * @param value |
---|
| 809 | * the new kernel |
---|
| 810 | */ |
---|
| 811 | public void setKernel(Kernel value) { |
---|
| 812 | m_kernel = value; |
---|
| 813 | } |
---|
| 814 | |
---|
| 815 | /** |
---|
| 816 | * Returns the tip text for this property |
---|
| 817 | * |
---|
| 818 | * @return tip text for this property suitable for displaying in the |
---|
| 819 | * explorer/experimenter gui |
---|
| 820 | */ |
---|
| 821 | public String filterTypeTipText() { |
---|
| 822 | return "Determines how/if the data will be transformed."; |
---|
| 823 | } |
---|
| 824 | |
---|
| 825 | /** |
---|
| 826 | * Gets how the training data will be transformed. Will be one of |
---|
| 827 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
| 828 | * |
---|
| 829 | * @return the filtering mode |
---|
| 830 | */ |
---|
| 831 | public SelectedTag getFilterType() { |
---|
| 832 | |
---|
| 833 | return new SelectedTag(m_filterType, TAGS_FILTER); |
---|
| 834 | } |
---|
| 835 | |
---|
| 836 | /** |
---|
| 837 | * Sets how the training data will be transformed. Should be one of |
---|
| 838 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
| 839 | * |
---|
| 840 | * @param newType |
---|
| 841 | * the new filtering mode |
---|
| 842 | */ |
---|
| 843 | public void setFilterType(SelectedTag newType) { |
---|
| 844 | |
---|
| 845 | if (newType.getTags() == TAGS_FILTER) { |
---|
| 846 | m_filterType = newType.getSelectedTag().getID(); |
---|
| 847 | } |
---|
| 848 | } |
---|
| 849 | |
---|
| 850 | /** |
---|
| 851 | * Returns the tip text for this property |
---|
| 852 | * |
---|
| 853 | * @return tip text for this property suitable for displaying in the |
---|
| 854 | * explorer/experimenter gui |
---|
| 855 | */ |
---|
| 856 | public String noiseTipText() { |
---|
| 857 | return "The level of Gaussian Noise (added to the diagonal of the Covariance Matrix), after the " + |
---|
| 858 | "target has been normalized/standardized/left unchanged)."; |
---|
| 859 | } |
---|
| 860 | |
---|
| 861 | /** |
---|
| 862 | * Get the value of noise. |
---|
| 863 | * |
---|
| 864 | * @return Value of noise. |
---|
| 865 | */ |
---|
| 866 | public double getNoise() { |
---|
| 867 | return m_delta; |
---|
| 868 | } |
---|
| 869 | |
---|
| 870 | /** |
---|
| 871 | * Set the level of Gaussian Noise. |
---|
| 872 | * |
---|
| 873 | * @param v |
---|
| 874 | * Value to assign to noise. |
---|
| 875 | */ |
---|
| 876 | public void setNoise(double v) { |
---|
| 877 | m_delta = v; |
---|
| 878 | } |
---|
| 879 | |
---|
| 880 | /** |
---|
| 881 | * Prints out the classifier. |
---|
| 882 | * |
---|
| 883 | * @return a description of the classifier as a string |
---|
| 884 | */ |
---|
| 885 | public String toString() { |
---|
| 886 | |
---|
| 887 | StringBuffer text = new StringBuffer(); |
---|
| 888 | |
---|
| 889 | if (m_t == null) |
---|
| 890 | return "Gaussian Processes: No model built yet."; |
---|
| 891 | |
---|
| 892 | try { |
---|
| 893 | |
---|
| 894 | text.append("Gaussian Processes\n\n"); |
---|
| 895 | text.append("Kernel used:\n " + m_kernel.toString() + "\n\n"); |
---|
| 896 | |
---|
| 897 | text.append("All values shown based on: " + |
---|
| 898 | TAGS_FILTER[m_filterType].getReadable() + "\n\n"); |
---|
| 899 | |
---|
| 900 | |
---|
| 901 | text.append("Average Target Value : " + m_avg_target + "\n"); |
---|
| 902 | |
---|
| 903 | text.append("Inverted Covariance Matrix:\n"); |
---|
| 904 | double min = -m_L[0][0]; |
---|
| 905 | double max = -m_L[0][0]; |
---|
| 906 | for (int i = 0; i < m_NumTrain; i++) |
---|
| 907 | for (int j = 0; j <= i; j++) { |
---|
| 908 | if (-m_L[i][j] < min) |
---|
| 909 | min = -m_L[i][j]; |
---|
| 910 | else if (-m_L[i][j] > max) |
---|
| 911 | max = -m_L[i][j]; |
---|
| 912 | } |
---|
| 913 | text.append(" Lowest Value = " + min + "\n"); |
---|
| 914 | text.append(" Highest Value = " + max + "\n"); |
---|
| 915 | text.append("Inverted Covariance Matrix * Target-value Vector:\n"); |
---|
| 916 | min = m_t.get(0, 0); |
---|
| 917 | max = m_t.get(0, 0); |
---|
| 918 | for (int i = 0; i < m_NumTrain; i++) { |
---|
| 919 | if (m_t.get(i, 0) < min) |
---|
| 920 | min = m_t.get(i, 0); |
---|
| 921 | else if (m_t.get(i, 0) > max) |
---|
| 922 | max = m_t.get(i, 0); |
---|
| 923 | } |
---|
| 924 | text.append(" Lowest Value = " + min + "\n"); |
---|
| 925 | text.append(" Highest Value = " + max + "\n \n"); |
---|
| 926 | |
---|
| 927 | } catch (Exception e) { |
---|
| 928 | return "Can't print the classifier."; |
---|
| 929 | } |
---|
| 930 | |
---|
| 931 | return text.toString(); |
---|
| 932 | } |
---|
| 933 | |
---|
| 934 | /** |
---|
| 935 | * Main method for testing this class. |
---|
| 936 | * |
---|
| 937 | * @param argv |
---|
| 938 | * the commandline parameters |
---|
| 939 | */ |
---|
| 940 | public static void main(String[] argv) { |
---|
| 941 | |
---|
| 942 | runClassifier(new GaussianProcesses(), argv); |
---|
| 943 | } |
---|
| 944 | } |
---|