/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * TwoClassStats.java * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.evaluation; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * Encapsulates performance functions for two-class problems. * * @author Len Trigg (len@reeltwo.com) * @version $Revision: 1.9 $ */ public class TwoClassStats implements RevisionHandler { /** The names used when converting this object to a confusion matrix */ private static final String [] CATEGORY_NAMES = {"negative", "positive"}; /** Pos predicted as pos */ private double m_TruePos; /** Neg predicted as pos */ private double m_FalsePos; /** Neg predicted as neg */ private double m_TrueNeg; /** Pos predicted as neg */ private double m_FalseNeg; /** * Creates the TwoClassStats with the given initial performance values. * * @param tp the number of correctly classified positives * @param fp the number of incorrectly classified negatives * @param tn the number of correctly classified negatives * @param fn the number of incorrectly classified positives */ public TwoClassStats(double tp, double fp, double tn, double fn) { setTruePositive(tp); setFalsePositive(fp); setTrueNegative(tn); setFalseNegative(fn); } /** Sets the number of positive instances predicted as positive */ public void setTruePositive(double tp) { m_TruePos = tp; } /** Sets the number of negative instances predicted as positive */ public void setFalsePositive(double fp) { m_FalsePos = fp; } /** Sets the number of negative instances predicted as negative */ public void setTrueNegative(double tn) { m_TrueNeg = tn; } /** Sets the number of positive instances predicted as negative */ public void setFalseNegative(double fn) { m_FalseNeg = fn; } /** Gets the number of positive instances predicted as positive */ public double getTruePositive() { return m_TruePos; } /** Gets the number of negative instances predicted as positive */ public double getFalsePositive() { return m_FalsePos; } /** Gets the number of negative instances predicted as negative */ public double getTrueNegative() { return m_TrueNeg; } /** Gets the number of positive instances predicted as negative */ public double getFalseNegative() { return m_FalseNeg; } /** * Calculate the true positive rate. * This is defined as

*

   * correctly classified positives
   * ------------------------------
   *       total positives
   * 
* * @return the true positive rate */ public double getTruePositiveRate() { if (0 == (m_TruePos + m_FalseNeg)) { return 0; } else { return m_TruePos / (m_TruePos + m_FalseNeg); } } /** * Calculate the false positive rate. * This is defined as

*

   * incorrectly classified negatives
   * --------------------------------
   *        total negatives
   * 
* * @return the false positive rate */ public double getFalsePositiveRate() { if (0 == (m_FalsePos + m_TrueNeg)) { return 0; } else { return m_FalsePos / (m_FalsePos + m_TrueNeg); } } /** * Calculate the precision. * This is defined as

*

   * correctly classified positives
   * ------------------------------
   *  total predicted as positive
   * 
* * @return the precision */ public double getPrecision() { if (0 == (m_TruePos + m_FalsePos)) { return 0; } else { return m_TruePos / (m_TruePos + m_FalsePos); } } /** * Calculate the recall. * This is defined as

*

   * correctly classified positives
   * ------------------------------
   *       total positives
   * 

* (Which is also the same as the truePositiveRate.) * * @return the recall */ public double getRecall() { return getTruePositiveRate(); } /** * Calculate the F-Measure. * This is defined as

*

   * 2 * recall * precision
   * ----------------------
   *   recall + precision
   * 
* * @return the F-Measure */ public double getFMeasure() { double precision = getPrecision(); double recall = getRecall(); if ((precision + recall) == 0) { return 0; } return 2 * precision * recall / (precision + recall); } /** * Calculate the fallout. * This is defined as

*

   * incorrectly classified negatives
   * --------------------------------
   *   total predicted as positive
   * 
* * @return the fallout */ public double getFallout() { if (0 == (m_TruePos + m_FalsePos)) { return 0; } else { return m_FalsePos / (m_TruePos + m_FalsePos); } } /** * Generates a ConfusionMatrix representing the current * two-class statistics, using class names "negative" and "positive". * * @return a ConfusionMatrix. */ public ConfusionMatrix getConfusionMatrix() { ConfusionMatrix cm = new ConfusionMatrix(CATEGORY_NAMES); cm.setElement(0, 0, m_TrueNeg); cm.setElement(0, 1, m_FalsePos); cm.setElement(1, 0, m_FalseNeg); cm.setElement(1, 1, m_TruePos); return cm; } /** * Returns a string containing the various performance measures * for the current object */ public String toString() { StringBuffer res = new StringBuffer(); res.append(getTruePositive()).append(' '); res.append(getFalseNegative()).append(' '); res.append(getTrueNegative()).append(' '); res.append(getFalsePositive()).append(' '); res.append(getFalsePositiveRate()).append(' '); res.append(getTruePositiveRate()).append(' '); res.append(getPrecision()).append(' '); res.append(getRecall()).append(' '); res.append(getFMeasure()).append(' '); res.append(getFallout()).append(' '); return res.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } }