1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * TwoClassStats.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.evaluation; |
---|
24 | |
---|
25 | import weka.core.RevisionHandler; |
---|
26 | import weka.core.RevisionUtils; |
---|
27 | |
---|
28 | /** |
---|
29 | * Encapsulates performance functions for two-class problems. |
---|
30 | * |
---|
31 | * @author Len Trigg (len@reeltwo.com) |
---|
32 | * @version $Revision: 1.9 $ |
---|
33 | */ |
---|
34 | public class TwoClassStats |
---|
35 | implements RevisionHandler { |
---|
36 | |
---|
37 | /** The names used when converting this object to a confusion matrix */ |
---|
38 | private static final String [] CATEGORY_NAMES = {"negative", "positive"}; |
---|
39 | |
---|
40 | /** Pos predicted as pos */ |
---|
41 | private double m_TruePos; |
---|
42 | |
---|
43 | /** Neg predicted as pos */ |
---|
44 | private double m_FalsePos; |
---|
45 | |
---|
46 | /** Neg predicted as neg */ |
---|
47 | private double m_TrueNeg; |
---|
48 | |
---|
49 | /** Pos predicted as neg */ |
---|
50 | private double m_FalseNeg; |
---|
51 | |
---|
52 | /** |
---|
53 | * Creates the TwoClassStats with the given initial performance values. |
---|
54 | * |
---|
55 | * @param tp the number of correctly classified positives |
---|
56 | * @param fp the number of incorrectly classified negatives |
---|
57 | * @param tn the number of correctly classified negatives |
---|
58 | * @param fn the number of incorrectly classified positives |
---|
59 | */ |
---|
60 | public TwoClassStats(double tp, double fp, double tn, double fn) { |
---|
61 | |
---|
62 | setTruePositive(tp); |
---|
63 | setFalsePositive(fp); |
---|
64 | setTrueNegative(tn); |
---|
65 | setFalseNegative(fn); |
---|
66 | } |
---|
67 | |
---|
68 | /** Sets the number of positive instances predicted as positive */ |
---|
69 | public void setTruePositive(double tp) { m_TruePos = tp; } |
---|
70 | |
---|
71 | /** Sets the number of negative instances predicted as positive */ |
---|
72 | public void setFalsePositive(double fp) { m_FalsePos = fp; } |
---|
73 | |
---|
74 | /** Sets the number of negative instances predicted as negative */ |
---|
75 | public void setTrueNegative(double tn) { m_TrueNeg = tn; } |
---|
76 | |
---|
77 | /** Sets the number of positive instances predicted as negative */ |
---|
78 | public void setFalseNegative(double fn) { m_FalseNeg = fn; } |
---|
79 | |
---|
80 | /** Gets the number of positive instances predicted as positive */ |
---|
81 | public double getTruePositive() { return m_TruePos; } |
---|
82 | |
---|
83 | /** Gets the number of negative instances predicted as positive */ |
---|
84 | public double getFalsePositive() { return m_FalsePos; } |
---|
85 | |
---|
86 | /** Gets the number of negative instances predicted as negative */ |
---|
87 | public double getTrueNegative() { return m_TrueNeg; } |
---|
88 | |
---|
89 | /** Gets the number of positive instances predicted as negative */ |
---|
90 | public double getFalseNegative() { return m_FalseNeg; } |
---|
91 | |
---|
92 | /** |
---|
93 | * Calculate the true positive rate. |
---|
94 | * This is defined as<p> |
---|
95 | * <pre> |
---|
96 | * correctly classified positives |
---|
97 | * ------------------------------ |
---|
98 | * total positives |
---|
99 | * </pre> |
---|
100 | * |
---|
101 | * @return the true positive rate |
---|
102 | */ |
---|
103 | public double getTruePositiveRate() { |
---|
104 | if (0 == (m_TruePos + m_FalseNeg)) { |
---|
105 | return 0; |
---|
106 | } else { |
---|
107 | return m_TruePos / (m_TruePos + m_FalseNeg); |
---|
108 | } |
---|
109 | } |
---|
110 | |
---|
111 | /** |
---|
112 | * Calculate the false positive rate. |
---|
113 | * This is defined as<p> |
---|
114 | * <pre> |
---|
115 | * incorrectly classified negatives |
---|
116 | * -------------------------------- |
---|
117 | * total negatives |
---|
118 | * </pre> |
---|
119 | * |
---|
120 | * @return the false positive rate |
---|
121 | */ |
---|
122 | public double getFalsePositiveRate() { |
---|
123 | if (0 == (m_FalsePos + m_TrueNeg)) { |
---|
124 | return 0; |
---|
125 | } else { |
---|
126 | return m_FalsePos / (m_FalsePos + m_TrueNeg); |
---|
127 | } |
---|
128 | } |
---|
129 | |
---|
130 | /** |
---|
131 | * Calculate the precision. |
---|
132 | * This is defined as<p> |
---|
133 | * <pre> |
---|
134 | * correctly classified positives |
---|
135 | * ------------------------------ |
---|
136 | * total predicted as positive |
---|
137 | * </pre> |
---|
138 | * |
---|
139 | * @return the precision |
---|
140 | */ |
---|
141 | public double getPrecision() { |
---|
142 | if (0 == (m_TruePos + m_FalsePos)) { |
---|
143 | return 0; |
---|
144 | } else { |
---|
145 | return m_TruePos / (m_TruePos + m_FalsePos); |
---|
146 | } |
---|
147 | } |
---|
148 | |
---|
149 | /** |
---|
150 | * Calculate the recall. |
---|
151 | * This is defined as<p> |
---|
152 | * <pre> |
---|
153 | * correctly classified positives |
---|
154 | * ------------------------------ |
---|
155 | * total positives |
---|
156 | * </pre><p> |
---|
157 | * (Which is also the same as the truePositiveRate.) |
---|
158 | * |
---|
159 | * @return the recall |
---|
160 | */ |
---|
161 | public double getRecall() { return getTruePositiveRate(); } |
---|
162 | |
---|
163 | /** |
---|
164 | * Calculate the F-Measure. |
---|
165 | * This is defined as<p> |
---|
166 | * <pre> |
---|
167 | * 2 * recall * precision |
---|
168 | * ---------------------- |
---|
169 | * recall + precision |
---|
170 | * </pre> |
---|
171 | * |
---|
172 | * @return the F-Measure |
---|
173 | */ |
---|
174 | public double getFMeasure() { |
---|
175 | |
---|
176 | double precision = getPrecision(); |
---|
177 | double recall = getRecall(); |
---|
178 | if ((precision + recall) == 0) { |
---|
179 | return 0; |
---|
180 | } |
---|
181 | return 2 * precision * recall / (precision + recall); |
---|
182 | } |
---|
183 | |
---|
184 | /** |
---|
185 | * Calculate the fallout. |
---|
186 | * This is defined as<p> |
---|
187 | * <pre> |
---|
188 | * incorrectly classified negatives |
---|
189 | * -------------------------------- |
---|
190 | * total predicted as positive |
---|
191 | * </pre> |
---|
192 | * |
---|
193 | * @return the fallout |
---|
194 | */ |
---|
195 | public double getFallout() { |
---|
196 | if (0 == (m_TruePos + m_FalsePos)) { |
---|
197 | return 0; |
---|
198 | } else { |
---|
199 | return m_FalsePos / (m_TruePos + m_FalsePos); |
---|
200 | } |
---|
201 | } |
---|
202 | |
---|
203 | /** |
---|
204 | * Generates a <code>ConfusionMatrix</code> representing the current |
---|
205 | * two-class statistics, using class names "negative" and "positive". |
---|
206 | * |
---|
207 | * @return a <code>ConfusionMatrix</code>. |
---|
208 | */ |
---|
209 | public ConfusionMatrix getConfusionMatrix() { |
---|
210 | |
---|
211 | ConfusionMatrix cm = new ConfusionMatrix(CATEGORY_NAMES); |
---|
212 | cm.setElement(0, 0, m_TrueNeg); |
---|
213 | cm.setElement(0, 1, m_FalsePos); |
---|
214 | cm.setElement(1, 0, m_FalseNeg); |
---|
215 | cm.setElement(1, 1, m_TruePos); |
---|
216 | return cm; |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Returns a string containing the various performance measures |
---|
221 | * for the current object |
---|
222 | */ |
---|
223 | public String toString() { |
---|
224 | |
---|
225 | StringBuffer res = new StringBuffer(); |
---|
226 | res.append(getTruePositive()).append(' '); |
---|
227 | res.append(getFalseNegative()).append(' '); |
---|
228 | res.append(getTrueNegative()).append(' '); |
---|
229 | res.append(getFalsePositive()).append(' '); |
---|
230 | res.append(getFalsePositiveRate()).append(' '); |
---|
231 | res.append(getTruePositiveRate()).append(' '); |
---|
232 | res.append(getPrecision()).append(' '); |
---|
233 | res.append(getRecall()).append(' '); |
---|
234 | res.append(getFMeasure()).append(' '); |
---|
235 | res.append(getFallout()).append(' '); |
---|
236 | return res.toString(); |
---|
237 | } |
---|
238 | |
---|
239 | /** |
---|
240 | * Returns the revision string. |
---|
241 | * |
---|
242 | * @return the revision |
---|
243 | */ |
---|
244 | public String getRevision() { |
---|
245 | return RevisionUtils.extract("$Revision: 1.9 $"); |
---|
246 | } |
---|
247 | } |
---|