1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ThresholdCurve.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.evaluation; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.core.Attribute; |
---|
28 | import weka.core.FastVector; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.DenseInstance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.RevisionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.Utils; |
---|
35 | |
---|
36 | /** |
---|
37 | * Generates points illustrating prediction tradeoffs that can be obtained |
---|
38 | * by varying the threshold value between classes. For example, the typical |
---|
39 | * threshold value of 0.5 means the predicted probability of "positive" must be |
---|
40 | * higher than 0.5 for the instance to be predicted as "positive". The |
---|
41 | * resulting dataset can be used to visualize precision/recall tradeoff, or |
---|
42 | * for ROC curve analysis (true positive rate vs false positive rate). |
---|
43 | * Weka just varies the threshold on the class probability estimates in each |
---|
44 | * case. The Mann Whitney statistic is used to calculate the AUC. |
---|
45 | * |
---|
46 | * @author Len Trigg (len@reeltwo.com) |
---|
47 | * @version $Revision: 5987 $ |
---|
48 | */ |
---|
49 | public class ThresholdCurve |
---|
50 | implements RevisionHandler { |
---|
51 | |
---|
52 | /** The name of the relation used in threshold curve datasets */ |
---|
53 | public static final String RELATION_NAME = "ThresholdCurve"; |
---|
54 | |
---|
55 | /** attribute name: True Positives */ |
---|
56 | public static final String TRUE_POS_NAME = "True Positives"; |
---|
57 | /** attribute name: False Negatives */ |
---|
58 | public static final String FALSE_NEG_NAME = "False Negatives"; |
---|
59 | /** attribute name: False Positives */ |
---|
60 | public static final String FALSE_POS_NAME = "False Positives"; |
---|
61 | /** attribute name: True Negatives */ |
---|
62 | public static final String TRUE_NEG_NAME = "True Negatives"; |
---|
63 | /** attribute name: False Positive Rate" */ |
---|
64 | public static final String FP_RATE_NAME = "False Positive Rate"; |
---|
65 | /** attribute name: True Positive Rate */ |
---|
66 | public static final String TP_RATE_NAME = "True Positive Rate"; |
---|
67 | /** attribute name: Precision */ |
---|
68 | public static final String PRECISION_NAME = "Precision"; |
---|
69 | /** attribute name: Recall */ |
---|
70 | public static final String RECALL_NAME = "Recall"; |
---|
71 | /** attribute name: Fallout */ |
---|
72 | public static final String FALLOUT_NAME = "Fallout"; |
---|
73 | /** attribute name: FMeasure */ |
---|
74 | public static final String FMEASURE_NAME = "FMeasure"; |
---|
75 | /** attribute name: Sample Size */ |
---|
76 | public static final String SAMPLE_SIZE_NAME = "Sample Size"; |
---|
77 | /** attribute name: Lift */ |
---|
78 | public static final String LIFT_NAME = "Lift"; |
---|
79 | /** attribute name: Threshold */ |
---|
80 | public static final String THRESHOLD_NAME = "Threshold"; |
---|
81 | |
---|
82 | /** |
---|
83 | * Calculates the performance stats for the default class and return |
---|
84 | * results as a set of Instances. The |
---|
85 | * structure of these Instances is as follows:<p> <ul> |
---|
86 | * <li> <b>True Positives </b> |
---|
87 | * <li> <b>False Negatives</b> |
---|
88 | * <li> <b>False Positives</b> |
---|
89 | * <li> <b>True Negatives</b> |
---|
90 | * <li> <b>False Positive Rate</b> |
---|
91 | * <li> <b>True Positive Rate</b> |
---|
92 | * <li> <b>Precision</b> |
---|
93 | * <li> <b>Recall</b> |
---|
94 | * <li> <b>Fallout</b> |
---|
95 | * <li> <b>Threshold</b> contains the probability threshold that gives |
---|
96 | * rise to the previous performance values. |
---|
97 | * </ul> <p> |
---|
98 | * For the definitions of these measures, see TwoClassStats <p> |
---|
99 | * |
---|
100 | * @see TwoClassStats |
---|
101 | * @param predictions the predictions to base the curve on |
---|
102 | * @return datapoints as a set of instances, null if no predictions |
---|
103 | * have been made. |
---|
104 | */ |
---|
105 | public Instances getCurve(FastVector predictions) { |
---|
106 | |
---|
107 | if (predictions.size() == 0) { |
---|
108 | return null; |
---|
109 | } |
---|
110 | return getCurve(predictions, |
---|
111 | ((NominalPrediction)predictions.elementAt(0)) |
---|
112 | .distribution().length - 1); |
---|
113 | } |
---|
114 | |
---|
115 | /** |
---|
116 | * Calculates the performance stats for the desired class and return |
---|
117 | * results as a set of Instances. |
---|
118 | * |
---|
119 | * @param predictions the predictions to base the curve on |
---|
120 | * @param classIndex index of the class of interest. |
---|
121 | * @return datapoints as a set of instances. |
---|
122 | */ |
---|
123 | public Instances getCurve(FastVector predictions, int classIndex) { |
---|
124 | |
---|
125 | if ((predictions.size() == 0) || |
---|
126 | (((NominalPrediction)predictions.elementAt(0)) |
---|
127 | .distribution().length <= classIndex)) { |
---|
128 | return null; |
---|
129 | } |
---|
130 | |
---|
131 | double totPos = 0, totNeg = 0; |
---|
132 | double [] probs = getProbabilities(predictions, classIndex); |
---|
133 | |
---|
134 | // Get distribution of positive/negatives |
---|
135 | for (int i = 0; i < probs.length; i++) { |
---|
136 | NominalPrediction pred = (NominalPrediction)predictions.elementAt(i); |
---|
137 | if (pred.actual() == Prediction.MISSING_VALUE) { |
---|
138 | System.err.println(getClass().getName() |
---|
139 | + " Skipping prediction with missing class value"); |
---|
140 | continue; |
---|
141 | } |
---|
142 | if (pred.weight() < 0) { |
---|
143 | System.err.println(getClass().getName() |
---|
144 | + " Skipping prediction with negative weight"); |
---|
145 | continue; |
---|
146 | } |
---|
147 | if (pred.actual() == classIndex) { |
---|
148 | totPos += pred.weight(); |
---|
149 | } else { |
---|
150 | totNeg += pred.weight(); |
---|
151 | } |
---|
152 | } |
---|
153 | |
---|
154 | Instances insts = makeHeader(); |
---|
155 | int [] sorted = Utils.sort(probs); |
---|
156 | TwoClassStats tc = new TwoClassStats(totPos, totNeg, 0, 0); |
---|
157 | double threshold = 0; |
---|
158 | double cumulativePos = 0; |
---|
159 | double cumulativeNeg = 0; |
---|
160 | for (int i = 0; i < sorted.length; i++) { |
---|
161 | |
---|
162 | if ((i == 0) || (probs[sorted[i]] > threshold)) { |
---|
163 | tc.setTruePositive(tc.getTruePositive() - cumulativePos); |
---|
164 | tc.setFalseNegative(tc.getFalseNegative() + cumulativePos); |
---|
165 | tc.setFalsePositive(tc.getFalsePositive() - cumulativeNeg); |
---|
166 | tc.setTrueNegative(tc.getTrueNegative() + cumulativeNeg); |
---|
167 | threshold = probs[sorted[i]]; |
---|
168 | insts.add(makeInstance(tc, threshold)); |
---|
169 | cumulativePos = 0; |
---|
170 | cumulativeNeg = 0; |
---|
171 | if (i == sorted.length - 1) { |
---|
172 | break; |
---|
173 | } |
---|
174 | } |
---|
175 | |
---|
176 | NominalPrediction pred = (NominalPrediction)predictions.elementAt(sorted[i]); |
---|
177 | |
---|
178 | if (pred.actual() == Prediction.MISSING_VALUE) { |
---|
179 | System.err.println(getClass().getName() |
---|
180 | + " Skipping prediction with missing class value"); |
---|
181 | continue; |
---|
182 | } |
---|
183 | if (pred.weight() < 0) { |
---|
184 | System.err.println(getClass().getName() |
---|
185 | + " Skipping prediction with negative weight"); |
---|
186 | continue; |
---|
187 | } |
---|
188 | if (pred.actual() == classIndex) { |
---|
189 | cumulativePos += pred.weight(); |
---|
190 | } else { |
---|
191 | cumulativeNeg += pred.weight(); |
---|
192 | } |
---|
193 | |
---|
194 | /* |
---|
195 | System.out.println(tc + " " + probs[sorted[i]] |
---|
196 | + " " + (pred.actual() == classIndex)); |
---|
197 | */ |
---|
198 | /*if ((i != (sorted.length - 1)) && |
---|
199 | ((i == 0) || |
---|
200 | (probs[sorted[i]] != probs[sorted[i - 1]]))) { |
---|
201 | insts.add(makeInstance(tc, probs[sorted[i]])); |
---|
202 | }*/ |
---|
203 | } |
---|
204 | return insts; |
---|
205 | } |
---|
206 | |
---|
207 | /** |
---|
208 | * Calculates the n point precision result, which is the precision averaged |
---|
209 | * over n evenly spaced (w.r.t recall) samples of the curve. |
---|
210 | * |
---|
211 | * @param tcurve a previously extracted threshold curve Instances. |
---|
212 | * @param n the number of points to average over. |
---|
213 | * @return the n-point precision. |
---|
214 | */ |
---|
215 | public static double getNPointPrecision(Instances tcurve, int n) { |
---|
216 | |
---|
217 | if (!RELATION_NAME.equals(tcurve.relationName()) |
---|
218 | || (tcurve.numInstances() == 0)) { |
---|
219 | return Double.NaN; |
---|
220 | } |
---|
221 | int recallInd = tcurve.attribute(RECALL_NAME).index(); |
---|
222 | int precisInd = tcurve.attribute(PRECISION_NAME).index(); |
---|
223 | double [] recallVals = tcurve.attributeToDoubleArray(recallInd); |
---|
224 | int [] sorted = Utils.sort(recallVals); |
---|
225 | double isize = 1.0 / (n - 1); |
---|
226 | double psum = 0; |
---|
227 | for (int i = 0; i < n; i++) { |
---|
228 | int pos = binarySearch(sorted, recallVals, i * isize); |
---|
229 | double recall = recallVals[sorted[pos]]; |
---|
230 | double precis = tcurve.instance(sorted[pos]).value(precisInd); |
---|
231 | /* |
---|
232 | System.err.println("Point " + (i + 1) + ": i=" + pos |
---|
233 | + " r=" + (i * isize) |
---|
234 | + " p'=" + precis |
---|
235 | + " r'=" + recall); |
---|
236 | */ |
---|
237 | // interpolate figures for non-endpoints |
---|
238 | while ((pos != 0) && (pos < sorted.length - 1)) { |
---|
239 | pos++; |
---|
240 | double recall2 = recallVals[sorted[pos]]; |
---|
241 | if (recall2 != recall) { |
---|
242 | double precis2 = tcurve.instance(sorted[pos]).value(precisInd); |
---|
243 | double slope = (precis2 - precis) / (recall2 - recall); |
---|
244 | double offset = precis - recall * slope; |
---|
245 | precis = isize * i * slope + offset; |
---|
246 | /* |
---|
247 | System.err.println("Point2 " + (i + 1) + ": i=" + pos |
---|
248 | + " r=" + (i * isize) |
---|
249 | + " p'=" + precis2 |
---|
250 | + " r'=" + recall2 |
---|
251 | + " p''=" + precis); |
---|
252 | */ |
---|
253 | break; |
---|
254 | } |
---|
255 | } |
---|
256 | psum += precis; |
---|
257 | } |
---|
258 | return psum / n; |
---|
259 | } |
---|
260 | |
---|
261 | /** |
---|
262 | * Calculates the area under the ROC curve as the Wilcoxon-Mann-Whitney statistic. |
---|
263 | * |
---|
264 | * @param tcurve a previously extracted threshold curve Instances. |
---|
265 | * @return the ROC area, or Double.NaN if you don't pass in |
---|
266 | * a ThresholdCurve generated Instances. |
---|
267 | */ |
---|
268 | public static double getROCArea(Instances tcurve) { |
---|
269 | |
---|
270 | final int n = tcurve.numInstances(); |
---|
271 | if (!RELATION_NAME.equals(tcurve.relationName()) |
---|
272 | || (n == 0)) { |
---|
273 | return Double.NaN; |
---|
274 | } |
---|
275 | final int tpInd = tcurve.attribute(TRUE_POS_NAME).index(); |
---|
276 | final int fpInd = tcurve.attribute(FALSE_POS_NAME).index(); |
---|
277 | final double [] tpVals = tcurve.attributeToDoubleArray(tpInd); |
---|
278 | final double [] fpVals = tcurve.attributeToDoubleArray(fpInd); |
---|
279 | |
---|
280 | double area = 0.0, cumNeg = 0.0; |
---|
281 | final double totalPos = tpVals[0]; |
---|
282 | final double totalNeg = fpVals[0]; |
---|
283 | for (int i = 0; i < n; i++) { |
---|
284 | double cip, cin; |
---|
285 | if (i < n - 1) { |
---|
286 | cip = tpVals[i] - tpVals[i + 1]; |
---|
287 | cin = fpVals[i] - fpVals[i + 1]; |
---|
288 | } else { |
---|
289 | cip = tpVals[n - 1]; |
---|
290 | cin = fpVals[n - 1]; |
---|
291 | } |
---|
292 | area += cip * (cumNeg + (0.5 * cin)); |
---|
293 | cumNeg += cin; |
---|
294 | } |
---|
295 | area /= (totalNeg * totalPos); |
---|
296 | |
---|
297 | return area; |
---|
298 | } |
---|
299 | |
---|
300 | /** |
---|
301 | * Gets the index of the instance with the closest threshold value to the |
---|
302 | * desired target |
---|
303 | * |
---|
304 | * @param tcurve a set of instances that have been generated by this class |
---|
305 | * @param threshold the target threshold |
---|
306 | * @return the index of the instance that has threshold closest to |
---|
307 | * the target, or -1 if this could not be found (i.e. no data, or |
---|
308 | * bad threshold target) |
---|
309 | */ |
---|
310 | public static int getThresholdInstance(Instances tcurve, double threshold) { |
---|
311 | |
---|
312 | if (!RELATION_NAME.equals(tcurve.relationName()) |
---|
313 | || (tcurve.numInstances() == 0) |
---|
314 | || (threshold < 0) |
---|
315 | || (threshold > 1.0)) { |
---|
316 | return -1; |
---|
317 | } |
---|
318 | if (tcurve.numInstances() == 1) { |
---|
319 | return 0; |
---|
320 | } |
---|
321 | double [] tvals = tcurve.attributeToDoubleArray(tcurve.numAttributes() - 1); |
---|
322 | int [] sorted = Utils.sort(tvals); |
---|
323 | return binarySearch(sorted, tvals, threshold); |
---|
324 | } |
---|
325 | |
---|
326 | /** |
---|
327 | * performs a binary search |
---|
328 | * |
---|
329 | * @param index the indices |
---|
330 | * @param vals the values |
---|
331 | * @param target the target to look for |
---|
332 | * @return the index of the target |
---|
333 | */ |
---|
334 | private static int binarySearch(int [] index, double [] vals, double target) { |
---|
335 | |
---|
336 | int lo = 0, hi = index.length - 1; |
---|
337 | while (hi - lo > 1) { |
---|
338 | int mid = lo + (hi - lo) / 2; |
---|
339 | double midval = vals[index[mid]]; |
---|
340 | if (target > midval) { |
---|
341 | lo = mid; |
---|
342 | } else if (target < midval) { |
---|
343 | hi = mid; |
---|
344 | } else { |
---|
345 | while ((mid > 0) && (vals[index[mid - 1]] == target)) { |
---|
346 | mid --; |
---|
347 | } |
---|
348 | return mid; |
---|
349 | } |
---|
350 | } |
---|
351 | return lo; |
---|
352 | } |
---|
353 | |
---|
354 | /** |
---|
355 | * |
---|
356 | * @param predictions the predictions to use |
---|
357 | * @param classIndex the class index |
---|
358 | * @return the probabilities |
---|
359 | */ |
---|
360 | private double [] getProbabilities(FastVector predictions, int classIndex) { |
---|
361 | |
---|
362 | // sort by predicted probability of the desired class. |
---|
363 | double [] probs = new double [predictions.size()]; |
---|
364 | for (int i = 0; i < probs.length; i++) { |
---|
365 | NominalPrediction pred = (NominalPrediction)predictions.elementAt(i); |
---|
366 | probs[i] = pred.distribution()[classIndex]; |
---|
367 | } |
---|
368 | return probs; |
---|
369 | } |
---|
370 | |
---|
371 | /** |
---|
372 | * generates the header |
---|
373 | * |
---|
374 | * @return the header |
---|
375 | */ |
---|
376 | private Instances makeHeader() { |
---|
377 | |
---|
378 | FastVector fv = new FastVector(); |
---|
379 | fv.addElement(new Attribute(TRUE_POS_NAME)); |
---|
380 | fv.addElement(new Attribute(FALSE_NEG_NAME)); |
---|
381 | fv.addElement(new Attribute(FALSE_POS_NAME)); |
---|
382 | fv.addElement(new Attribute(TRUE_NEG_NAME)); |
---|
383 | fv.addElement(new Attribute(FP_RATE_NAME)); |
---|
384 | fv.addElement(new Attribute(TP_RATE_NAME)); |
---|
385 | fv.addElement(new Attribute(PRECISION_NAME)); |
---|
386 | fv.addElement(new Attribute(RECALL_NAME)); |
---|
387 | fv.addElement(new Attribute(FALLOUT_NAME)); |
---|
388 | fv.addElement(new Attribute(FMEASURE_NAME)); |
---|
389 | fv.addElement(new Attribute(SAMPLE_SIZE_NAME)); |
---|
390 | fv.addElement(new Attribute(LIFT_NAME)); |
---|
391 | fv.addElement(new Attribute(THRESHOLD_NAME)); |
---|
392 | return new Instances(RELATION_NAME, fv, 100); |
---|
393 | } |
---|
394 | |
---|
395 | /** |
---|
396 | * generates an instance out of the given data |
---|
397 | * |
---|
398 | * @param tc the statistics |
---|
399 | * @param prob the probability |
---|
400 | * @return the generated instance |
---|
401 | */ |
---|
402 | private Instance makeInstance(TwoClassStats tc, double prob) { |
---|
403 | |
---|
404 | int count = 0; |
---|
405 | double [] vals = new double[13]; |
---|
406 | vals[count++] = tc.getTruePositive(); |
---|
407 | vals[count++] = tc.getFalseNegative(); |
---|
408 | vals[count++] = tc.getFalsePositive(); |
---|
409 | vals[count++] = tc.getTrueNegative(); |
---|
410 | vals[count++] = tc.getFalsePositiveRate(); |
---|
411 | vals[count++] = tc.getTruePositiveRate(); |
---|
412 | vals[count++] = tc.getPrecision(); |
---|
413 | vals[count++] = tc.getRecall(); |
---|
414 | vals[count++] = tc.getFallout(); |
---|
415 | vals[count++] = tc.getFMeasure(); |
---|
416 | double ss = (tc.getTruePositive() + tc.getFalsePositive()) / |
---|
417 | (tc.getTruePositive() + tc.getFalsePositive() + tc.getTrueNegative() + tc.getFalseNegative()); |
---|
418 | vals[count++] = ss; |
---|
419 | double expectedByChance = (ss * (tc.getTruePositive() + tc.getFalseNegative())); |
---|
420 | if (expectedByChance < 1) { |
---|
421 | vals[count++] = Utils.missingValue(); |
---|
422 | } else { |
---|
423 | vals[count++] = tc.getTruePositive() / expectedByChance; |
---|
424 | |
---|
425 | } |
---|
426 | vals[count++] = prob; |
---|
427 | return new DenseInstance(1.0, vals); |
---|
428 | } |
---|
429 | |
---|
430 | /** |
---|
431 | * Returns the revision string. |
---|
432 | * |
---|
433 | * @return the revision |
---|
434 | */ |
---|
435 | public String getRevision() { |
---|
436 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
437 | } |
---|
438 | |
---|
439 | /** |
---|
440 | * Tests the ThresholdCurve generation from the command line. |
---|
441 | * The classifier is currently hardcoded. Pipe in an arff file. |
---|
442 | * |
---|
443 | * @param args currently ignored |
---|
444 | */ |
---|
445 | public static void main(String [] args) { |
---|
446 | |
---|
447 | try { |
---|
448 | |
---|
449 | Instances inst = new Instances(new java.io.InputStreamReader(System.in)); |
---|
450 | if (false) { |
---|
451 | System.out.println(ThresholdCurve.getNPointPrecision(inst, 11)); |
---|
452 | } else { |
---|
453 | inst.setClassIndex(inst.numAttributes() - 1); |
---|
454 | ThresholdCurve tc = new ThresholdCurve(); |
---|
455 | EvaluationUtils eu = new EvaluationUtils(); |
---|
456 | Classifier classifier = new weka.classifiers.functions.Logistic(); |
---|
457 | FastVector predictions = new FastVector(); |
---|
458 | for (int i = 0; i < 2; i++) { // Do two runs. |
---|
459 | eu.setSeed(i); |
---|
460 | predictions.appendElements(eu.getCVPredictions(classifier, inst, 10)); |
---|
461 | //System.out.println("\n\n\n"); |
---|
462 | } |
---|
463 | Instances result = tc.getCurve(predictions); |
---|
464 | System.out.println(result); |
---|
465 | } |
---|
466 | } catch (Exception ex) { |
---|
467 | ex.printStackTrace(); |
---|
468 | } |
---|
469 | } |
---|
470 | } |
---|