1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NumericPrediction.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.evaluation; |
---|
24 | |
---|
25 | import weka.classifiers.IntervalEstimator; |
---|
26 | import weka.core.RevisionHandler; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | |
---|
29 | import java.io.Serializable; |
---|
30 | |
---|
31 | /** |
---|
32 | * Encapsulates an evaluatable numeric prediction: the predicted class value |
---|
33 | * plus the actual class value. |
---|
34 | * |
---|
35 | * @author Len Trigg (len@reeltwo.com) |
---|
36 | * @version $Revision: 5714 $ |
---|
37 | */ |
---|
38 | public class NumericPrediction |
---|
39 | implements Prediction, Serializable, RevisionHandler { |
---|
40 | |
---|
41 | /** for serialization. */ |
---|
42 | private static final long serialVersionUID = -4880216423674233887L; |
---|
43 | |
---|
44 | /** The actual class value. */ |
---|
45 | private double m_Actual = MISSING_VALUE; |
---|
46 | |
---|
47 | /** The predicted class value. */ |
---|
48 | private double m_Predicted = MISSING_VALUE; |
---|
49 | |
---|
50 | /** The weight assigned to this prediction. */ |
---|
51 | private double m_Weight = 1; |
---|
52 | |
---|
53 | /** the prediction intervals. */ |
---|
54 | private double[][] m_PredictionIntervals; |
---|
55 | |
---|
56 | /** |
---|
57 | * Creates the NumericPrediction object with a default weight of 1.0. |
---|
58 | * |
---|
59 | * @param actual the actual value, or MISSING_VALUE. |
---|
60 | * @param predicted the predicted value, or MISSING_VALUE. |
---|
61 | */ |
---|
62 | public NumericPrediction(double actual, double predicted) { |
---|
63 | this(actual, predicted, 1); |
---|
64 | } |
---|
65 | |
---|
66 | /** |
---|
67 | * Creates the NumericPrediction object. |
---|
68 | * |
---|
69 | * @param actual the actual value, or MISSING_VALUE. |
---|
70 | * @param predicted the predicted value, or MISSING_VALUE. |
---|
71 | * @param weight the weight assigned to the prediction. |
---|
72 | */ |
---|
73 | public NumericPrediction(double actual, double predicted, double weight) { |
---|
74 | this(actual, predicted, weight, new double[0][]); |
---|
75 | } |
---|
76 | |
---|
77 | /** |
---|
78 | * Creates the NumericPrediction object. |
---|
79 | * |
---|
80 | * @param actual the actual value, or MISSING_VALUE. |
---|
81 | * @param predicted the predicted value, or MISSING_VALUE. |
---|
82 | * @param weight the weight assigned to the prediction. |
---|
83 | * @param predInt the prediction intervals from classifiers implementing |
---|
84 | * the <code>IntervalEstimator</code> interface. |
---|
85 | * @see IntervalEstimator |
---|
86 | */ |
---|
87 | public NumericPrediction(double actual, double predicted, double weight, double[][] predInt) { |
---|
88 | m_Actual = actual; |
---|
89 | m_Predicted = predicted; |
---|
90 | m_Weight = weight; |
---|
91 | setPredictionIntervals(predInt); |
---|
92 | } |
---|
93 | |
---|
94 | /** |
---|
95 | * Gets the actual class value. |
---|
96 | * |
---|
97 | * @return the actual class value, or MISSING_VALUE if no |
---|
98 | * prediction was made. |
---|
99 | */ |
---|
100 | public double actual() { |
---|
101 | return m_Actual; |
---|
102 | } |
---|
103 | |
---|
104 | /** |
---|
105 | * Gets the predicted class value. |
---|
106 | * |
---|
107 | * @return the predicted class value, or MISSING_VALUE if no |
---|
108 | * prediction was made. |
---|
109 | */ |
---|
110 | public double predicted() { |
---|
111 | return m_Predicted; |
---|
112 | } |
---|
113 | |
---|
114 | /** |
---|
115 | * Gets the weight assigned to this prediction. This is typically the weight |
---|
116 | * of the test instance the prediction was made for. |
---|
117 | * |
---|
118 | * @return the weight assigned to this prediction. |
---|
119 | */ |
---|
120 | public double weight() { |
---|
121 | return m_Weight; |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Calculates the prediction error. This is defined as the predicted |
---|
126 | * value minus the actual value. |
---|
127 | * |
---|
128 | * @return the error for this prediction, or |
---|
129 | * MISSING_VALUE if either the actual or predicted value |
---|
130 | * is missing. |
---|
131 | */ |
---|
132 | public double error() { |
---|
133 | if ((m_Actual == MISSING_VALUE) || |
---|
134 | (m_Predicted == MISSING_VALUE)) { |
---|
135 | return MISSING_VALUE; |
---|
136 | } |
---|
137 | return m_Predicted - m_Actual; |
---|
138 | } |
---|
139 | |
---|
140 | /** |
---|
141 | * Sets the prediction intervals for this prediction. |
---|
142 | * |
---|
143 | * @param predInt the prediction intervals |
---|
144 | */ |
---|
145 | public void setPredictionIntervals(double[][] predInt) { |
---|
146 | m_PredictionIntervals = predInt.clone(); |
---|
147 | } |
---|
148 | |
---|
149 | /** |
---|
150 | * Returns the predictions intervals. Only classifiers implementing the |
---|
151 | * <code>IntervalEstimator</code> interface. |
---|
152 | * |
---|
153 | * @return the prediction intervals. |
---|
154 | * @see IntervalEstimator |
---|
155 | */ |
---|
156 | public double[][] predictionIntervals() { |
---|
157 | return m_PredictionIntervals; |
---|
158 | } |
---|
159 | |
---|
160 | /** |
---|
161 | * Gets a human readable representation of this prediction. |
---|
162 | * |
---|
163 | * @return a human readable representation of this prediction. |
---|
164 | */ |
---|
165 | public String toString() { |
---|
166 | StringBuffer sb = new StringBuffer(); |
---|
167 | sb.append("NUM: ").append(actual()).append(' ').append(predicted()); |
---|
168 | sb.append(' ').append(weight()); |
---|
169 | return sb.toString(); |
---|
170 | } |
---|
171 | |
---|
172 | /** |
---|
173 | * Returns the revision string. |
---|
174 | * |
---|
175 | * @return the revision |
---|
176 | */ |
---|
177 | public String getRevision() { |
---|
178 | return RevisionUtils.extract("$Revision: 5714 $"); |
---|
179 | } |
---|
180 | } |
---|