source: src/main/java/weka/classifiers/evaluation/NumericPrediction.java @ 10

Last change on this file since 10 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 5.0 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    NumericPrediction.java
19 *    Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.evaluation;
24
25import weka.classifiers.IntervalEstimator;
26import weka.core.RevisionHandler;
27import weka.core.RevisionUtils;
28
29import java.io.Serializable;
30
31/**
32 * Encapsulates an evaluatable numeric prediction: the predicted class value
33 * plus the actual class value.
34 *
35 * @author Len Trigg (len@reeltwo.com)
36 * @version $Revision: 5714 $
37 */
38public class NumericPrediction
39  implements Prediction, Serializable, RevisionHandler {
40
41  /** for serialization. */
42  private static final long serialVersionUID = -4880216423674233887L;
43
44  /** The actual class value. */
45  private double m_Actual = MISSING_VALUE;
46
47  /** The predicted class value. */
48  private double m_Predicted = MISSING_VALUE;
49
50  /** The weight assigned to this prediction. */
51  private double m_Weight = 1;
52 
53  /** the prediction intervals. */
54  private double[][] m_PredictionIntervals;
55
56  /**
57   * Creates the NumericPrediction object with a default weight of 1.0.
58   *
59   * @param actual the actual value, or MISSING_VALUE.
60   * @param predicted the predicted value, or MISSING_VALUE.
61   */
62  public NumericPrediction(double actual, double predicted) {
63    this(actual, predicted, 1);
64  }
65
66  /**
67   * Creates the NumericPrediction object.
68   *
69   * @param actual the actual value, or MISSING_VALUE.
70   * @param predicted the predicted value, or MISSING_VALUE.
71   * @param weight the weight assigned to the prediction.
72   */
73  public NumericPrediction(double actual, double predicted, double weight) {
74    this(actual, predicted, weight, new double[0][]);
75  }
76
77  /**
78   * Creates the NumericPrediction object.
79   *
80   * @param actual the actual value, or MISSING_VALUE.
81   * @param predicted the predicted value, or MISSING_VALUE.
82   * @param weight the weight assigned to the prediction.
83   * @param predInt the prediction intervals from classifiers implementing
84   * the <code>IntervalEstimator</code> interface.
85   * @see IntervalEstimator
86   */
87  public NumericPrediction(double actual, double predicted, double weight, double[][] predInt) {
88    m_Actual = actual;
89    m_Predicted = predicted;
90    m_Weight = weight;
91    setPredictionIntervals(predInt);
92  }
93
94  /**
95   * Gets the actual class value.
96   *
97   * @return the actual class value, or MISSING_VALUE if no
98   * prediction was made. 
99   */
100  public double actual() { 
101    return m_Actual; 
102  }
103
104  /**
105   * Gets the predicted class value.
106   *
107   * @return the predicted class value, or MISSING_VALUE if no
108   * prediction was made. 
109   */
110  public double predicted() { 
111    return m_Predicted; 
112  }
113
114  /**
115   * Gets the weight assigned to this prediction. This is typically the weight
116   * of the test instance the prediction was made for.
117   *
118   * @return the weight assigned to this prediction.
119   */
120  public double weight() { 
121    return m_Weight; 
122  }
123
124  /**
125   * Calculates the prediction error. This is defined as the predicted
126   * value minus the actual value.
127   *
128   * @return the error for this prediction, or
129   * MISSING_VALUE if either the actual or predicted value
130   * is missing. 
131   */
132  public double error() {
133    if ((m_Actual == MISSING_VALUE) ||
134        (m_Predicted == MISSING_VALUE)) {
135      return MISSING_VALUE;
136    }
137    return m_Predicted - m_Actual;
138  }
139 
140  /**
141   * Sets the prediction intervals for this prediction.
142   *
143   * @param predInt the prediction intervals
144   */
145  public void setPredictionIntervals(double[][] predInt) {
146    m_PredictionIntervals = predInt.clone();
147  }
148 
149  /**
150   * Returns the predictions intervals. Only classifiers implementing the
151   * <code>IntervalEstimator</code> interface.
152   *
153   * @return the prediction intervals.
154   * @see IntervalEstimator
155   */
156  public double[][] predictionIntervals() {
157    return m_PredictionIntervals;
158  }
159
160  /**
161   * Gets a human readable representation of this prediction.
162   *
163   * @return a human readable representation of this prediction.
164   */
165  public String toString() {
166    StringBuffer sb = new StringBuffer();
167    sb.append("NUM: ").append(actual()).append(' ').append(predicted());
168    sb.append(' ').append(weight());
169    return sb.toString();
170  }
171 
172  /**
173   * Returns the revision string.
174   *
175   * @return            the revision
176   */
177  public String getRevision() {
178    return RevisionUtils.extract("$Revision: 5714 $");
179  }
180}
Note: See TracBrowser for help on using the repository browser.