source: src/main/java/weka/classifiers/evaluation/NominalPrediction.java @ 26

Last change on this file since 26 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 6.8 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    NominalPrediction.java
19 *    Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.evaluation;
24
25import weka.core.RevisionHandler;
26import weka.core.RevisionUtils;
27
28import java.io.Serializable;
29
30/**
31 * Encapsulates an evaluatable nominal prediction: the predicted probability
32 * distribution plus the actual class value.
33 *
34 * @author Len Trigg (len@reeltwo.com)
35 * @version $Revision: 1.12 $
36 */
37public class NominalPrediction
38  implements Prediction, Serializable, RevisionHandler {
39
40  /**
41   * Remove this if you change this class so that serialization would be
42   * affected.
43   */
44  static final long serialVersionUID = -8871333992740492788L;
45
46  /** The predicted probabilities */
47  private double [] m_Distribution;
48
49  /** The actual class value */
50  private double m_Actual = MISSING_VALUE;
51
52  /** The predicted class value */
53  private double m_Predicted = MISSING_VALUE;
54
55  /** The weight assigned to this prediction */
56  private double m_Weight = 1;
57
58  /**
59   * Creates the NominalPrediction object with a default weight of 1.0.
60   *
61   * @param actual the actual value, or MISSING_VALUE.
62   * @param distribution the predicted probability distribution. Use
63   * NominalPrediction.makeDistribution() if you only know the predicted value.
64   */
65  public NominalPrediction(double actual, double [] distribution) {
66
67    this(actual, distribution, 1);
68  }
69
70  /**
71   * Creates the NominalPrediction object.
72   *
73   * @param actual the actual value, or MISSING_VALUE.
74   * @param distribution the predicted probability distribution. Use
75   * NominalPrediction.makeDistribution() if you only know the predicted value.
76   * @param weight the weight assigned to the prediction.
77   */
78  public NominalPrediction(double actual, double [] distribution, 
79                           double weight) {
80
81    if (distribution == null) {
82      throw new NullPointerException("Null distribution in NominalPrediction.");
83    }
84    m_Actual = actual;
85    m_Distribution = distribution.clone();
86    m_Weight = weight;
87    updatePredicted();
88  }
89
90  /**
91   * Gets the predicted probabilities
92   *
93   * @return the predicted probabilities
94   */
95  public double [] distribution() { 
96
97    return m_Distribution; 
98  }
99
100  /**
101   * Gets the actual class value.
102   *
103   * @return the actual class value, or MISSING_VALUE if no
104   * prediction was made. 
105   */
106  public double actual() { 
107
108    return m_Actual; 
109  }
110
111  /**
112   * Gets the predicted class value.
113   *
114   * @return the predicted class value, or MISSING_VALUE if no
115   * prediction was made. 
116   */
117  public double predicted() { 
118
119    return m_Predicted; 
120  }
121
122  /**
123   * Gets the weight assigned to this prediction. This is typically the weight
124   * of the test instance the prediction was made for.
125   *
126   * @return the weight assigned to this prediction.
127   */
128  public double weight() { 
129
130    return m_Weight; 
131  }
132
133  /**
134   * Calculates the prediction margin. This is defined as the difference
135   * between the probability predicted for the actual class and the highest
136   * predicted probability of the other classes.
137   *
138   * @return the margin for this prediction, or
139   * MISSING_VALUE if either the actual or predicted value
140   * is missing. 
141   */
142  public double margin() {
143
144    if ((m_Actual == MISSING_VALUE) ||
145        (m_Predicted == MISSING_VALUE)) {
146      return MISSING_VALUE;
147    }
148    double probActual = m_Distribution[(int)m_Actual];
149    double probNext = 0;
150    for(int i = 0; i < m_Distribution.length; i++)
151      if ((i != m_Actual) &&
152          (m_Distribution[i] > probNext))
153        probNext = m_Distribution[i];
154
155    return probActual - probNext;
156  }
157
158  /**
159   * Convert a single prediction into a probability distribution
160   * with all zero probabilities except the predicted value which
161   * has probability 1.0. If no prediction was made, all probabilities
162   * are zero.
163   *
164   * @param predictedClass the index of the predicted class, or
165   * MISSING_VALUE if no prediction was made.
166   * @param numClasses the number of possible classes for this nominal
167   * prediction.
168   * @return the probability distribution. 
169   */
170  public static double [] makeDistribution(double predictedClass, 
171                                           int numClasses) {
172
173    double [] dist = new double [numClasses];
174    if (predictedClass == MISSING_VALUE) {
175      return dist;
176    }
177    dist[(int)predictedClass] = 1.0;
178    return dist;
179  }
180 
181  /**
182   * Creates a uniform probability distribution -- where each of the
183   * possible classes is assigned equal probability.
184   *
185   * @param numClasses the number of possible classes for this nominal
186   * prediction.
187   * @return the probability distribution. 
188   */
189  public static double [] makeUniformDistribution(int numClasses) {
190   
191    double [] dist = new double [numClasses];
192    for (int i = 0; i < numClasses; i++) {
193      dist[i] = 1.0 / numClasses;
194    }
195    return dist;
196  }
197 
198  /**
199   * Determines the predicted class (doesn't detect multiple
200   * classifications). If no prediction was made (i.e. all zero
201   * probababilities in the distribution), m_Prediction is set to
202   * MISSING_VALUE.
203   */
204  private void updatePredicted() {
205
206    int predictedClass = -1;
207    double bestProb = 0.0;
208    for(int i = 0; i < m_Distribution.length; i++) {
209      if (m_Distribution[i] > bestProb) {
210        predictedClass = i;
211        bestProb = m_Distribution[i];
212      }
213    }
214
215    if (predictedClass != -1) {
216      m_Predicted = predictedClass;
217    } else {
218      m_Predicted = MISSING_VALUE;
219    }
220  }
221
222  /**
223   * Gets a human readable representation of this prediction.
224   *
225   * @return a human readable representation of this prediction.
226   */
227  public String toString() {
228
229    StringBuffer sb = new StringBuffer();
230    sb.append("NOM: ").append(actual()).append(" ").append(predicted());
231    sb.append(' ').append(weight());
232    double [] dist = distribution();
233    for (int i = 0; i < dist.length; i++) {
234      sb.append(' ').append(dist[i]);
235    }
236    return sb.toString();
237  }
238 
239  /**
240   * Returns the revision string.
241   *
242   * @return            the revision
243   */
244  public String getRevision() {
245    return RevisionUtils.extract("$Revision: 1.12 $");
246  }
247}
248
Note: See TracBrowser for help on using the repository browser.