1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * MarginCurve.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.evaluation; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.FastVector; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.DenseInstance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.RevisionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.Utils; |
---|
33 | |
---|
34 | /** |
---|
35 | * Generates points illustrating the prediction margin. The margin is defined |
---|
36 | * as the difference between the probability predicted for the actual class and |
---|
37 | * the highest probability predicted for the other classes. One hypothesis |
---|
38 | * as to the good performance of boosting algorithms is that they increaes the |
---|
39 | * margins on the training data and this gives better performance on test data. |
---|
40 | * |
---|
41 | * @author Len Trigg (len@reeltwo.com) |
---|
42 | * @version $Revision: 5987 $ |
---|
43 | */ |
---|
44 | public class MarginCurve |
---|
45 | implements RevisionHandler { |
---|
46 | |
---|
47 | /** |
---|
48 | * Calculates the cumulative margin distribution for the set of |
---|
49 | * predictions, returning the result as a set of Instances. The |
---|
50 | * structure of these Instances is as follows:<p> <ul> |
---|
51 | * <li> <b>Margin</b> contains the margin value (which should be plotted |
---|
52 | * as an x-coordinate) |
---|
53 | * <li> <b>Current</b> contains the count of instances with the current |
---|
54 | * margin (plot as y axis) |
---|
55 | * <li> <b>Cumulative</b> contains the count of instances with margin |
---|
56 | * less than or equal to the current margin (plot as y axis) |
---|
57 | * </ul> <p> |
---|
58 | * |
---|
59 | * @return datapoints as a set of instances, null if no predictions |
---|
60 | * have been made. |
---|
61 | */ |
---|
62 | public Instances getCurve(FastVector predictions) { |
---|
63 | |
---|
64 | if (predictions.size() == 0) { |
---|
65 | return null; |
---|
66 | } |
---|
67 | |
---|
68 | Instances insts = makeHeader(); |
---|
69 | double [] margins = getMargins(predictions); |
---|
70 | int [] sorted = Utils.sort(margins); |
---|
71 | int binMargin = 0; |
---|
72 | int totalMargin = 0; |
---|
73 | insts.add(makeInstance(-1, binMargin, totalMargin)); |
---|
74 | for (int i = 0; i < sorted.length; i++) { |
---|
75 | double current = margins[sorted[i]]; |
---|
76 | double weight = ((NominalPrediction)predictions.elementAt(sorted[i])) |
---|
77 | .weight(); |
---|
78 | totalMargin += weight; |
---|
79 | binMargin += weight; |
---|
80 | if (true) { |
---|
81 | insts.add(makeInstance(current, binMargin, totalMargin)); |
---|
82 | binMargin = 0; |
---|
83 | } |
---|
84 | } |
---|
85 | return insts; |
---|
86 | } |
---|
87 | |
---|
88 | /** |
---|
89 | * Pulls all the margin values out of a vector of NominalPredictions. |
---|
90 | * |
---|
91 | * @param predictions a FastVector containing NominalPredictions |
---|
92 | * @return an array of margin values. |
---|
93 | */ |
---|
94 | private double [] getMargins(FastVector predictions) { |
---|
95 | |
---|
96 | // sort by predicted probability of the desired class. |
---|
97 | double [] margins = new double [predictions.size()]; |
---|
98 | for (int i = 0; i < margins.length; i++) { |
---|
99 | NominalPrediction pred = (NominalPrediction)predictions.elementAt(i); |
---|
100 | margins[i] = pred.margin(); |
---|
101 | } |
---|
102 | return margins; |
---|
103 | } |
---|
104 | |
---|
105 | /** |
---|
106 | * Creates an Instances object with the attributes we will be calculating. |
---|
107 | * |
---|
108 | * @return the Instances structure. |
---|
109 | */ |
---|
110 | private Instances makeHeader() { |
---|
111 | |
---|
112 | FastVector fv = new FastVector(); |
---|
113 | fv.addElement(new Attribute("Margin")); |
---|
114 | fv.addElement(new Attribute("Current")); |
---|
115 | fv.addElement(new Attribute("Cumulative")); |
---|
116 | return new Instances("MarginCurve", fv, 100); |
---|
117 | } |
---|
118 | |
---|
119 | /** |
---|
120 | * Creates an Instance object with the attributes calculated. |
---|
121 | * |
---|
122 | * @param margin the margin for this data point. |
---|
123 | * @param current the number of instances with this margin. |
---|
124 | * @param cumulative the number of instances with margin less than or equal |
---|
125 | * to this margin. |
---|
126 | * @return the Instance object. |
---|
127 | */ |
---|
128 | private Instance makeInstance(double margin, int current, int cumulative) { |
---|
129 | |
---|
130 | int count = 0; |
---|
131 | double [] vals = new double[3]; |
---|
132 | vals[count++] = margin; |
---|
133 | vals[count++] = current; |
---|
134 | vals[count++] = cumulative; |
---|
135 | return new DenseInstance(1.0, vals); |
---|
136 | } |
---|
137 | |
---|
138 | /** |
---|
139 | * Returns the revision string. |
---|
140 | * |
---|
141 | * @return the revision |
---|
142 | */ |
---|
143 | public String getRevision() { |
---|
144 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
145 | } |
---|
146 | |
---|
147 | /** |
---|
148 | * Tests the MarginCurve generation from the command line. |
---|
149 | * The classifier is currently hardcoded. Pipe in an arff file. |
---|
150 | * |
---|
151 | * @param args currently ignored |
---|
152 | */ |
---|
153 | public static void main(String [] args) { |
---|
154 | |
---|
155 | try { |
---|
156 | Utils.SMALL = 0; |
---|
157 | Instances inst = new Instances(new java.io.InputStreamReader(System.in)); |
---|
158 | inst.setClassIndex(inst.numAttributes() - 1); |
---|
159 | MarginCurve tc = new MarginCurve(); |
---|
160 | EvaluationUtils eu = new EvaluationUtils(); |
---|
161 | weka.classifiers.meta.LogitBoost classifier |
---|
162 | = new weka.classifiers.meta.LogitBoost(); |
---|
163 | classifier.setNumIterations(20); |
---|
164 | FastVector predictions |
---|
165 | = eu.getTrainTestPredictions(classifier, inst, inst); |
---|
166 | Instances result = tc.getCurve(predictions); |
---|
167 | System.out.println(result); |
---|
168 | } catch (Exception ex) { |
---|
169 | ex.printStackTrace(); |
---|
170 | } |
---|
171 | } |
---|
172 | } |
---|