/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * MarginCurve.java * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.evaluation; import weka.core.Attribute; import weka.core.FastVector; import weka.core.Instance; import weka.core.DenseInstance; import weka.core.Instances; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; /** * Generates points illustrating the prediction margin. The margin is defined * as the difference between the probability predicted for the actual class and * the highest probability predicted for the other classes. One hypothesis * as to the good performance of boosting algorithms is that they increaes the * margins on the training data and this gives better performance on test data. * * @author Len Trigg (len@reeltwo.com) * @version $Revision: 5987 $ */ public class MarginCurve implements RevisionHandler { /** * Calculates the cumulative margin distribution for the set of * predictions, returning the result as a set of Instances. The * structure of these Instances is as follows:
* * @return datapoints as a set of instances, null if no predictions * have been made. */ public Instances getCurve(FastVector predictions) { if (predictions.size() == 0) { return null; } Instances insts = makeHeader(); double [] margins = getMargins(predictions); int [] sorted = Utils.sort(margins); int binMargin = 0; int totalMargin = 0; insts.add(makeInstance(-1, binMargin, totalMargin)); for (int i = 0; i < sorted.length; i++) { double current = margins[sorted[i]]; double weight = ((NominalPrediction)predictions.elementAt(sorted[i])) .weight(); totalMargin += weight; binMargin += weight; if (true) { insts.add(makeInstance(current, binMargin, totalMargin)); binMargin = 0; } } return insts; } /** * Pulls all the margin values out of a vector of NominalPredictions. * * @param predictions a FastVector containing NominalPredictions * @return an array of margin values. */ private double [] getMargins(FastVector predictions) { // sort by predicted probability of the desired class. double [] margins = new double [predictions.size()]; for (int i = 0; i < margins.length; i++) { NominalPrediction pred = (NominalPrediction)predictions.elementAt(i); margins[i] = pred.margin(); } return margins; } /** * Creates an Instances object with the attributes we will be calculating. * * @return the Instances structure. */ private Instances makeHeader() { FastVector fv = new FastVector(); fv.addElement(new Attribute("Margin")); fv.addElement(new Attribute("Current")); fv.addElement(new Attribute("Cumulative")); return new Instances("MarginCurve", fv, 100); } /** * Creates an Instance object with the attributes calculated. * * @param margin the margin for this data point. * @param current the number of instances with this margin. * @param cumulative the number of instances with margin less than or equal * to this margin. * @return the Instance object. */ private Instance makeInstance(double margin, int current, int cumulative) { int count = 0; double [] vals = new double[3]; vals[count++] = margin; vals[count++] = current; vals[count++] = cumulative; return new DenseInstance(1.0, vals); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5987 $"); } /** * Tests the MarginCurve generation from the command line. * The classifier is currently hardcoded. Pipe in an arff file. * * @param args currently ignored */ public static void main(String [] args) { try { Utils.SMALL = 0; Instances inst = new Instances(new java.io.InputStreamReader(System.in)); inst.setClassIndex(inst.numAttributes() - 1); MarginCurve tc = new MarginCurve(); EvaluationUtils eu = new EvaluationUtils(); weka.classifiers.meta.LogitBoost classifier = new weka.classifiers.meta.LogitBoost(); classifier.setNumIterations(20); FastVector predictions = eu.getTrainTestPredictions(classifier, inst, inst); Instances result = tc.getCurve(predictions); System.out.println(result); } catch (Exception ex) { ex.printStackTrace(); } } }