1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * EvaluationUtils.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.evaluation; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.core.FastVector; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.RevisionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | |
---|
33 | import java.util.Random; |
---|
34 | |
---|
35 | /** |
---|
36 | * Contains utility functions for generating lists of predictions in |
---|
37 | * various manners. |
---|
38 | * |
---|
39 | * @author Len Trigg (len@reeltwo.com) |
---|
40 | * @version $Revision: 5928 $ |
---|
41 | */ |
---|
42 | public class EvaluationUtils |
---|
43 | implements RevisionHandler { |
---|
44 | |
---|
45 | /** Seed used to randomize data in cross-validation */ |
---|
46 | private int m_Seed = 1; |
---|
47 | |
---|
48 | /** Sets the seed for randomization during cross-validation */ |
---|
49 | public void setSeed(int seed) { m_Seed = seed; } |
---|
50 | |
---|
51 | /** Gets the seed for randomization during cross-validation */ |
---|
52 | public int getSeed() { return m_Seed; } |
---|
53 | |
---|
54 | /** |
---|
55 | * Generate a bunch of predictions ready for processing, by performing a |
---|
56 | * cross-validation on the supplied dataset. |
---|
57 | * |
---|
58 | * @param classifier the Classifier to evaluate |
---|
59 | * @param data the dataset |
---|
60 | * @param numFolds the number of folds in the cross-validation. |
---|
61 | * @exception Exception if an error occurs |
---|
62 | */ |
---|
63 | public FastVector getCVPredictions(Classifier classifier, |
---|
64 | Instances data, |
---|
65 | int numFolds) |
---|
66 | throws Exception { |
---|
67 | |
---|
68 | FastVector predictions = new FastVector(); |
---|
69 | Instances runInstances = new Instances(data); |
---|
70 | Random random = new Random(m_Seed); |
---|
71 | runInstances.randomize(random); |
---|
72 | if (runInstances.classAttribute().isNominal() && (numFolds > 1)) { |
---|
73 | runInstances.stratify(numFolds); |
---|
74 | } |
---|
75 | int inst = 0; |
---|
76 | for (int fold = 0; fold < numFolds; fold++) { |
---|
77 | Instances train = runInstances.trainCV(numFolds, fold, random); |
---|
78 | Instances test = runInstances.testCV(numFolds, fold); |
---|
79 | FastVector foldPred = getTrainTestPredictions(classifier, train, test); |
---|
80 | predictions.appendElements(foldPred); |
---|
81 | } |
---|
82 | return predictions; |
---|
83 | } |
---|
84 | |
---|
85 | /** |
---|
86 | * Generate a bunch of predictions ready for processing, by performing a |
---|
87 | * evaluation on a test set after training on the given training set. |
---|
88 | * |
---|
89 | * @param classifier the Classifier to evaluate |
---|
90 | * @param train the training dataset |
---|
91 | * @param test the test dataset |
---|
92 | * @exception Exception if an error occurs |
---|
93 | */ |
---|
94 | public FastVector getTrainTestPredictions(Classifier classifier, |
---|
95 | Instances train, Instances test) |
---|
96 | throws Exception { |
---|
97 | |
---|
98 | classifier.buildClassifier(train); |
---|
99 | return getTestPredictions(classifier, test); |
---|
100 | } |
---|
101 | |
---|
102 | /** |
---|
103 | * Generate a bunch of predictions ready for processing, by performing a |
---|
104 | * evaluation on a test set assuming the classifier is already trained. |
---|
105 | * |
---|
106 | * @param classifier the pre-trained Classifier to evaluate |
---|
107 | * @param test the test dataset |
---|
108 | * @exception Exception if an error occurs |
---|
109 | */ |
---|
110 | public FastVector getTestPredictions(Classifier classifier, |
---|
111 | Instances test) |
---|
112 | throws Exception { |
---|
113 | |
---|
114 | FastVector predictions = new FastVector(); |
---|
115 | for (int i = 0; i < test.numInstances(); i++) { |
---|
116 | if (!test.instance(i).classIsMissing()) { |
---|
117 | predictions.addElement(getPrediction(classifier, test.instance(i))); |
---|
118 | } |
---|
119 | } |
---|
120 | return predictions; |
---|
121 | } |
---|
122 | |
---|
123 | |
---|
124 | /** |
---|
125 | * Generate a single prediction for a test instance given the pre-trained |
---|
126 | * classifier. |
---|
127 | * |
---|
128 | * @param classifier the pre-trained Classifier to evaluate |
---|
129 | * @param test the test instance |
---|
130 | * @exception Exception if an error occurs |
---|
131 | */ |
---|
132 | public Prediction getPrediction(Classifier classifier, |
---|
133 | Instance test) |
---|
134 | throws Exception { |
---|
135 | |
---|
136 | double actual = test.classValue(); |
---|
137 | double [] dist = classifier.distributionForInstance(test); |
---|
138 | if (test.classAttribute().isNominal()) { |
---|
139 | return new NominalPrediction(actual, dist, test.weight()); |
---|
140 | } else { |
---|
141 | return new NumericPrediction(actual, dist[0], test.weight()); |
---|
142 | } |
---|
143 | } |
---|
144 | |
---|
145 | /** |
---|
146 | * Returns the revision string. |
---|
147 | * |
---|
148 | * @return the revision |
---|
149 | */ |
---|
150 | public String getRevision() { |
---|
151 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
152 | } |
---|
153 | } |
---|
154 | |
---|