[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * EvaluationUtils.java |
---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.evaluation; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.RevisionHandler; |
---|
| 31 | import weka.core.RevisionUtils; |
---|
| 32 | |
---|
| 33 | import java.util.Random; |
---|
| 34 | |
---|
| 35 | /** |
---|
| 36 | * Contains utility functions for generating lists of predictions in |
---|
| 37 | * various manners. |
---|
| 38 | * |
---|
| 39 | * @author Len Trigg (len@reeltwo.com) |
---|
| 40 | * @version $Revision: 5928 $ |
---|
| 41 | */ |
---|
| 42 | public class EvaluationUtils |
---|
| 43 | implements RevisionHandler { |
---|
| 44 | |
---|
| 45 | /** Seed used to randomize data in cross-validation */ |
---|
| 46 | private int m_Seed = 1; |
---|
| 47 | |
---|
| 48 | /** Sets the seed for randomization during cross-validation */ |
---|
| 49 | public void setSeed(int seed) { m_Seed = seed; } |
---|
| 50 | |
---|
| 51 | /** Gets the seed for randomization during cross-validation */ |
---|
| 52 | public int getSeed() { return m_Seed; } |
---|
| 53 | |
---|
| 54 | /** |
---|
| 55 | * Generate a bunch of predictions ready for processing, by performing a |
---|
| 56 | * cross-validation on the supplied dataset. |
---|
| 57 | * |
---|
| 58 | * @param classifier the Classifier to evaluate |
---|
| 59 | * @param data the dataset |
---|
| 60 | * @param numFolds the number of folds in the cross-validation. |
---|
| 61 | * @exception Exception if an error occurs |
---|
| 62 | */ |
---|
| 63 | public FastVector getCVPredictions(Classifier classifier, |
---|
| 64 | Instances data, |
---|
| 65 | int numFolds) |
---|
| 66 | throws Exception { |
---|
| 67 | |
---|
| 68 | FastVector predictions = new FastVector(); |
---|
| 69 | Instances runInstances = new Instances(data); |
---|
| 70 | Random random = new Random(m_Seed); |
---|
| 71 | runInstances.randomize(random); |
---|
| 72 | if (runInstances.classAttribute().isNominal() && (numFolds > 1)) { |
---|
| 73 | runInstances.stratify(numFolds); |
---|
| 74 | } |
---|
| 75 | int inst = 0; |
---|
| 76 | for (int fold = 0; fold < numFolds; fold++) { |
---|
| 77 | Instances train = runInstances.trainCV(numFolds, fold, random); |
---|
| 78 | Instances test = runInstances.testCV(numFolds, fold); |
---|
| 79 | FastVector foldPred = getTrainTestPredictions(classifier, train, test); |
---|
| 80 | predictions.appendElements(foldPred); |
---|
| 81 | } |
---|
| 82 | return predictions; |
---|
| 83 | } |
---|
| 84 | |
---|
| 85 | /** |
---|
| 86 | * Generate a bunch of predictions ready for processing, by performing a |
---|
| 87 | * evaluation on a test set after training on the given training set. |
---|
| 88 | * |
---|
| 89 | * @param classifier the Classifier to evaluate |
---|
| 90 | * @param train the training dataset |
---|
| 91 | * @param test the test dataset |
---|
| 92 | * @exception Exception if an error occurs |
---|
| 93 | */ |
---|
| 94 | public FastVector getTrainTestPredictions(Classifier classifier, |
---|
| 95 | Instances train, Instances test) |
---|
| 96 | throws Exception { |
---|
| 97 | |
---|
| 98 | classifier.buildClassifier(train); |
---|
| 99 | return getTestPredictions(classifier, test); |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | /** |
---|
| 103 | * Generate a bunch of predictions ready for processing, by performing a |
---|
| 104 | * evaluation on a test set assuming the classifier is already trained. |
---|
| 105 | * |
---|
| 106 | * @param classifier the pre-trained Classifier to evaluate |
---|
| 107 | * @param test the test dataset |
---|
| 108 | * @exception Exception if an error occurs |
---|
| 109 | */ |
---|
| 110 | public FastVector getTestPredictions(Classifier classifier, |
---|
| 111 | Instances test) |
---|
| 112 | throws Exception { |
---|
| 113 | |
---|
| 114 | FastVector predictions = new FastVector(); |
---|
| 115 | for (int i = 0; i < test.numInstances(); i++) { |
---|
| 116 | if (!test.instance(i).classIsMissing()) { |
---|
| 117 | predictions.addElement(getPrediction(classifier, test.instance(i))); |
---|
| 118 | } |
---|
| 119 | } |
---|
| 120 | return predictions; |
---|
| 121 | } |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | /** |
---|
| 125 | * Generate a single prediction for a test instance given the pre-trained |
---|
| 126 | * classifier. |
---|
| 127 | * |
---|
| 128 | * @param classifier the pre-trained Classifier to evaluate |
---|
| 129 | * @param test the test instance |
---|
| 130 | * @exception Exception if an error occurs |
---|
| 131 | */ |
---|
| 132 | public Prediction getPrediction(Classifier classifier, |
---|
| 133 | Instance test) |
---|
| 134 | throws Exception { |
---|
| 135 | |
---|
| 136 | double actual = test.classValue(); |
---|
| 137 | double [] dist = classifier.distributionForInstance(test); |
---|
| 138 | if (test.classAttribute().isNominal()) { |
---|
| 139 | return new NominalPrediction(actual, dist, test.weight()); |
---|
| 140 | } else { |
---|
| 141 | return new NumericPrediction(actual, dist[0], test.weight()); |
---|
| 142 | } |
---|
| 143 | } |
---|
| 144 | |
---|
| 145 | /** |
---|
| 146 | * Returns the revision string. |
---|
| 147 | * |
---|
| 148 | * @return the revision |
---|
| 149 | */ |
---|
| 150 | public String getRevision() { |
---|
| 151 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 152 | } |
---|
| 153 | } |
---|
| 154 | |
---|