1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NominalPrediction.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.evaluation; |
---|
24 | |
---|
25 | import weka.classifiers.CostMatrix; |
---|
26 | import weka.core.FastVector; |
---|
27 | import weka.core.Matrix; |
---|
28 | import weka.core.RevisionUtils; |
---|
29 | import weka.core.Utils; |
---|
30 | |
---|
31 | /** |
---|
32 | * Cells of this matrix correspond to counts of the number (or weight) |
---|
33 | * of predictions for each actual value / predicted value combination. |
---|
34 | * |
---|
35 | * @author Len Trigg (len@reeltwo.com) |
---|
36 | * @version $Revision: 1.9 $ |
---|
37 | */ |
---|
38 | public class ConfusionMatrix extends Matrix { |
---|
39 | |
---|
40 | /** for serialization */ |
---|
41 | private static final long serialVersionUID = -181789981401504090L; |
---|
42 | |
---|
43 | /** Stores the names of the classes */ |
---|
44 | protected String [] m_ClassNames; |
---|
45 | |
---|
46 | /** |
---|
47 | * Creates the confusion matrix with the given class names. |
---|
48 | * |
---|
49 | * @param classNames an array containing the names the classes. |
---|
50 | */ |
---|
51 | public ConfusionMatrix(String [] classNames) { |
---|
52 | |
---|
53 | super(classNames.length, classNames.length); |
---|
54 | m_ClassNames = (String [])classNames.clone(); |
---|
55 | } |
---|
56 | |
---|
57 | /** |
---|
58 | * Makes a copy of this ConfusionMatrix after applying the |
---|
59 | * supplied CostMatrix to the cells. The resulting ConfusionMatrix |
---|
60 | * can be used to get cost-weighted statistics. |
---|
61 | * |
---|
62 | * @param costs the CostMatrix. |
---|
63 | * @return a ConfusionMatrix that has had costs applied. |
---|
64 | * @exception Exception if the CostMatrix is not of the same size |
---|
65 | * as this ConfusionMatrix. |
---|
66 | */ |
---|
67 | public ConfusionMatrix makeWeighted(CostMatrix costs) throws Exception { |
---|
68 | |
---|
69 | if (costs.size() != size()) { |
---|
70 | throw new Exception("Cost and confusion matrices must be the same size"); |
---|
71 | } |
---|
72 | ConfusionMatrix weighted = new ConfusionMatrix(m_ClassNames); |
---|
73 | for (int row = 0; row < size(); row++) { |
---|
74 | for (int col = 0; col < size(); col++) { |
---|
75 | weighted.setElement(row, col, getElement(row, col) * |
---|
76 | costs.getElement(row, col)); |
---|
77 | } |
---|
78 | } |
---|
79 | return weighted; |
---|
80 | } |
---|
81 | |
---|
82 | |
---|
83 | /** |
---|
84 | * Creates and returns a clone of this object. |
---|
85 | * |
---|
86 | * @return a clone of this instance. |
---|
87 | */ |
---|
88 | public Object clone() { |
---|
89 | |
---|
90 | ConfusionMatrix m = (ConfusionMatrix)super.clone(); |
---|
91 | m.m_ClassNames = (String [])m_ClassNames.clone(); |
---|
92 | return m; |
---|
93 | } |
---|
94 | |
---|
95 | /** |
---|
96 | * Gets the number of classes. |
---|
97 | * |
---|
98 | * @return the number of classes |
---|
99 | */ |
---|
100 | public int size() { |
---|
101 | |
---|
102 | return m_ClassNames.length; |
---|
103 | } |
---|
104 | |
---|
105 | /** |
---|
106 | * Gets the name of one of the classes. |
---|
107 | * |
---|
108 | * @param index the index of the class. |
---|
109 | * @return the class name. |
---|
110 | */ |
---|
111 | public String className(int index) { |
---|
112 | |
---|
113 | return m_ClassNames[index]; |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * Includes a prediction in the confusion matrix. |
---|
118 | * |
---|
119 | * @param pred the NominalPrediction to include |
---|
120 | * @exception Exception if no valid prediction was made (i.e. |
---|
121 | * unclassified). |
---|
122 | */ |
---|
123 | public void addPrediction(NominalPrediction pred) throws Exception { |
---|
124 | |
---|
125 | if (pred.predicted() == NominalPrediction.MISSING_VALUE) { |
---|
126 | throw new Exception("No predicted value given."); |
---|
127 | } |
---|
128 | if (pred.actual() == NominalPrediction.MISSING_VALUE) { |
---|
129 | throw new Exception("No actual value given."); |
---|
130 | } |
---|
131 | addElement((int)pred.actual(), (int)pred.predicted(), pred.weight()); |
---|
132 | } |
---|
133 | |
---|
134 | /** |
---|
135 | * Includes a whole bunch of predictions in the confusion matrix. |
---|
136 | * |
---|
137 | * @param predictions a FastVector containing the NominalPredictions |
---|
138 | * to include |
---|
139 | * @exception Exception if no valid prediction was made (i.e. |
---|
140 | * unclassified). |
---|
141 | */ |
---|
142 | public void addPredictions(FastVector predictions) throws Exception { |
---|
143 | |
---|
144 | for (int i = 0; i < predictions.size(); i++) { |
---|
145 | addPrediction((NominalPrediction)predictions.elementAt(i)); |
---|
146 | } |
---|
147 | } |
---|
148 | |
---|
149 | |
---|
150 | /** |
---|
151 | * Gets the performance with respect to one of the classes |
---|
152 | * as a TwoClassStats object. |
---|
153 | * |
---|
154 | * @param classIndex the index of the class of interest. |
---|
155 | * @return the generated TwoClassStats object. |
---|
156 | */ |
---|
157 | public TwoClassStats getTwoClassStats(int classIndex) { |
---|
158 | |
---|
159 | double fp = 0, tp = 0, fn = 0, tn = 0; |
---|
160 | for (int row = 0; row < size(); row++) { |
---|
161 | for (int col = 0; col < size(); col++) { |
---|
162 | if (row == classIndex) { |
---|
163 | if (col == classIndex) { |
---|
164 | tp += getElement(row, col); |
---|
165 | } else { |
---|
166 | fn += getElement(row, col); |
---|
167 | } |
---|
168 | } else { |
---|
169 | if (col == classIndex) { |
---|
170 | fp += getElement(row, col); |
---|
171 | } else { |
---|
172 | tn += getElement(row, col); |
---|
173 | } |
---|
174 | } |
---|
175 | } |
---|
176 | } |
---|
177 | return new TwoClassStats(tp, fp, tn, fn); |
---|
178 | } |
---|
179 | |
---|
180 | /** |
---|
181 | * Gets the number of correct classifications (that is, for which a |
---|
182 | * correct prediction was made). (Actually the sum of the weights of |
---|
183 | * these classifications) |
---|
184 | * |
---|
185 | * @return the number of correct classifications |
---|
186 | */ |
---|
187 | public double correct() { |
---|
188 | |
---|
189 | double correct = 0; |
---|
190 | for (int i = 0; i < size(); i++) { |
---|
191 | correct += getElement(i, i); |
---|
192 | } |
---|
193 | return correct; |
---|
194 | } |
---|
195 | |
---|
196 | /** |
---|
197 | * Gets the number of incorrect classifications (that is, for which an |
---|
198 | * incorrect prediction was made). (Actually the sum of the weights of |
---|
199 | * these classifications) |
---|
200 | * |
---|
201 | * @return the number of incorrect classifications |
---|
202 | */ |
---|
203 | public double incorrect() { |
---|
204 | |
---|
205 | double incorrect = 0; |
---|
206 | for (int row = 0; row < size(); row++) { |
---|
207 | for (int col = 0; col < size(); col++) { |
---|
208 | if (row != col) { |
---|
209 | incorrect += getElement(row, col); |
---|
210 | } |
---|
211 | } |
---|
212 | } |
---|
213 | return incorrect; |
---|
214 | } |
---|
215 | |
---|
216 | /** |
---|
217 | * Gets the number of predictions that were made |
---|
218 | * (actually the sum of the weights of predictions where the |
---|
219 | * class value was known). |
---|
220 | * |
---|
221 | * @return the number of predictions with known class |
---|
222 | */ |
---|
223 | public double total() { |
---|
224 | |
---|
225 | double total = 0; |
---|
226 | for (int row = 0; row < size(); row++) { |
---|
227 | for (int col = 0; col < size(); col++) { |
---|
228 | total += getElement(row, col); |
---|
229 | } |
---|
230 | } |
---|
231 | return total; |
---|
232 | } |
---|
233 | |
---|
234 | /** |
---|
235 | * Returns the estimated error rate. |
---|
236 | * |
---|
237 | * @return the estimated error rate (between 0 and 1). |
---|
238 | */ |
---|
239 | public double errorRate() { |
---|
240 | |
---|
241 | return incorrect() / total(); |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Calls toString() with a default title. |
---|
246 | * |
---|
247 | * @return the confusion matrix as a string |
---|
248 | */ |
---|
249 | public String toString() { |
---|
250 | |
---|
251 | return toString("=== Confusion Matrix ===\n"); |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * Outputs the performance statistics as a classification confusion |
---|
256 | * matrix. For each class value, shows the distribution of |
---|
257 | * predicted class values. |
---|
258 | * |
---|
259 | * @param title the title for the confusion matrix |
---|
260 | * @return the confusion matrix as a String |
---|
261 | */ |
---|
262 | public String toString(String title) { |
---|
263 | |
---|
264 | StringBuffer text = new StringBuffer(); |
---|
265 | char [] IDChars = {'a','b','c','d','e','f','g','h','i','j', |
---|
266 | 'k','l','m','n','o','p','q','r','s','t', |
---|
267 | 'u','v','w','x','y','z'}; |
---|
268 | int IDWidth; |
---|
269 | boolean fractional = false; |
---|
270 | |
---|
271 | // Find the maximum value in the matrix |
---|
272 | // and check for fractional display requirement |
---|
273 | double maxval = 0; |
---|
274 | for (int i = 0; i < size(); i++) { |
---|
275 | for (int j = 0; j < size(); j++) { |
---|
276 | double current = getElement(i, j); |
---|
277 | if (current < 0) { |
---|
278 | current *= -10; |
---|
279 | } |
---|
280 | if (current > maxval) { |
---|
281 | maxval = current; |
---|
282 | } |
---|
283 | double fract = current - Math.rint(current); |
---|
284 | if (!fractional |
---|
285 | && ((Math.log(fract) / Math.log(10)) >= -2)) { |
---|
286 | fractional = true; |
---|
287 | } |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | IDWidth = 1 + Math.max((int)(Math.log(maxval) / Math.log(10) |
---|
292 | + (fractional ? 3 : 0)), |
---|
293 | (int)(Math.log(size()) / |
---|
294 | Math.log(IDChars.length))); |
---|
295 | text.append(title).append("\n"); |
---|
296 | for (int i = 0; i < size(); i++) { |
---|
297 | if (fractional) { |
---|
298 | text.append(" ").append(num2ShortID(i,IDChars,IDWidth - 3)) |
---|
299 | .append(" "); |
---|
300 | } else { |
---|
301 | text.append(" ").append(num2ShortID(i,IDChars,IDWidth)); |
---|
302 | } |
---|
303 | } |
---|
304 | text.append(" actual class\n"); |
---|
305 | for (int i = 0; i< size(); i++) { |
---|
306 | for (int j = 0; j < size(); j++) { |
---|
307 | text.append(" ").append( |
---|
308 | Utils.doubleToString(getElement(i, j), |
---|
309 | IDWidth, |
---|
310 | (fractional ? 2 : 0))); |
---|
311 | } |
---|
312 | text.append(" | ").append(num2ShortID(i,IDChars,IDWidth)) |
---|
313 | .append(" = ").append(m_ClassNames[i]).append("\n"); |
---|
314 | } |
---|
315 | return text.toString(); |
---|
316 | } |
---|
317 | |
---|
318 | /** |
---|
319 | * Method for generating indices for the confusion matrix. |
---|
320 | * |
---|
321 | * @param num integer to format |
---|
322 | * @return the formatted integer as a string |
---|
323 | */ |
---|
324 | private static String num2ShortID(int num, char [] IDChars, int IDWidth) { |
---|
325 | |
---|
326 | char ID [] = new char [IDWidth]; |
---|
327 | int i; |
---|
328 | |
---|
329 | for(i = IDWidth - 1; i >=0; i--) { |
---|
330 | ID[i] = IDChars[num % IDChars.length]; |
---|
331 | num = num / IDChars.length - 1; |
---|
332 | if (num < 0) { |
---|
333 | break; |
---|
334 | } |
---|
335 | } |
---|
336 | for(i--; i >= 0; i--) { |
---|
337 | ID[i] = ' '; |
---|
338 | } |
---|
339 | |
---|
340 | return new String(ID); |
---|
341 | } |
---|
342 | |
---|
343 | /** |
---|
344 | * Returns the revision string. |
---|
345 | * |
---|
346 | * @return the revision |
---|
347 | */ |
---|
348 | public String getRevision() { |
---|
349 | return RevisionUtils.extract("$Revision: 1.9 $"); |
---|
350 | } |
---|
351 | } |
---|