| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * BIFReader.java |
|---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.bayes.net; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.bayes.BayesNet; |
|---|
| 26 | import weka.classifiers.bayes.net.estimate.DiscreteEstimatorBayes; |
|---|
| 27 | import weka.core.FastVector; |
|---|
| 28 | import weka.core.Instances; |
|---|
| 29 | import weka.core.RevisionUtils; |
|---|
| 30 | import weka.core.TechnicalInformation; |
|---|
| 31 | import weka.core.TechnicalInformation.Type; |
|---|
| 32 | import weka.core.TechnicalInformation.Field; |
|---|
| 33 | import weka.core.TechnicalInformationHandler; |
|---|
| 34 | import weka.estimators.Estimator; |
|---|
| 35 | |
|---|
| 36 | import java.io.File; |
|---|
| 37 | import java.io.StringReader; |
|---|
| 38 | import java.util.StringTokenizer; |
|---|
| 39 | |
|---|
| 40 | import javax.xml.parsers.DocumentBuilderFactory; |
|---|
| 41 | |
|---|
| 42 | import org.w3c.dom.CharacterData; |
|---|
| 43 | import org.w3c.dom.Document; |
|---|
| 44 | import org.w3c.dom.Element; |
|---|
| 45 | import org.w3c.dom.Node; |
|---|
| 46 | import org.w3c.dom.NodeList; |
|---|
| 47 | |
|---|
| 48 | /** |
|---|
| 49 | <!-- globalinfo-start --> |
|---|
| 50 | * Builds a description of a Bayes Net classifier stored in XML BIF 0.3 format.<br/> |
|---|
| 51 | * <br/> |
|---|
| 52 | * For more details on XML BIF see:<br/> |
|---|
| 53 | * <br/> |
|---|
| 54 | * Fabio Cozman, Marek Druzdzel, Daniel Garcia (1998). XML BIF version 0.3. URL http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/. |
|---|
| 55 | * <p/> |
|---|
| 56 | <!-- globalinfo-end --> |
|---|
| 57 | * |
|---|
| 58 | <!-- technical-bibtex-start --> |
|---|
| 59 | * BibTeX: |
|---|
| 60 | * <pre> |
|---|
| 61 | * @misc{Cozman1998, |
|---|
| 62 | * author = {Fabio Cozman and Marek Druzdzel and Daniel Garcia}, |
|---|
| 63 | * title = {XML BIF version 0.3}, |
|---|
| 64 | * year = {1998}, |
|---|
| 65 | * URL = {http://www-2.cs.cmu.edu/\~fgcozman/Research/InterchangeFormat/} |
|---|
| 66 | * } |
|---|
| 67 | * </pre> |
|---|
| 68 | * <p/> |
|---|
| 69 | <!-- technical-bibtex-end --> |
|---|
| 70 | * |
|---|
| 71 | <!-- options-start --> |
|---|
| 72 | * Valid options are: <p/> |
|---|
| 73 | * |
|---|
| 74 | * <pre> -D |
|---|
| 75 | * Do not use ADTree data structure |
|---|
| 76 | * </pre> |
|---|
| 77 | * |
|---|
| 78 | * <pre> -B <BIF file> |
|---|
| 79 | * BIF file to compare with |
|---|
| 80 | * </pre> |
|---|
| 81 | * |
|---|
| 82 | * <pre> -Q weka.classifiers.bayes.net.search.SearchAlgorithm |
|---|
| 83 | * Search algorithm |
|---|
| 84 | * </pre> |
|---|
| 85 | * |
|---|
| 86 | * <pre> -E weka.classifiers.bayes.net.estimate.SimpleEstimator |
|---|
| 87 | * Estimator algorithm |
|---|
| 88 | * </pre> |
|---|
| 89 | * |
|---|
| 90 | <!-- options-end --> |
|---|
| 91 | * |
|---|
| 92 | * @author Remco Bouckaert (rrb@xm.co.nz) |
|---|
| 93 | * @version $Revision: 1.15 $ |
|---|
| 94 | */ |
|---|
| 95 | public class BIFReader |
|---|
| 96 | extends BayesNet |
|---|
| 97 | implements TechnicalInformationHandler { |
|---|
| 98 | |
|---|
| 99 | protected int [] m_nPositionX; |
|---|
| 100 | protected int [] m_nPositionY; |
|---|
| 101 | private int [] m_order; |
|---|
| 102 | |
|---|
| 103 | /** for serialization */ |
|---|
| 104 | static final long serialVersionUID = -8358864680379881429L; |
|---|
| 105 | |
|---|
| 106 | /** |
|---|
| 107 | * This will return a string describing the classifier. |
|---|
| 108 | * @return The string. |
|---|
| 109 | */ |
|---|
| 110 | public String globalInfo() { |
|---|
| 111 | return |
|---|
| 112 | "Builds a description of a Bayes Net classifier stored in XML " |
|---|
| 113 | + "BIF 0.3 format.\n\n" |
|---|
| 114 | + "For more details on XML BIF see:\n\n" |
|---|
| 115 | + getTechnicalInformation().toString(); |
|---|
| 116 | } |
|---|
| 117 | |
|---|
| 118 | /** processFile reads a BIFXML file and initializes a Bayes Net |
|---|
| 119 | * @param sFile name of the file to parse |
|---|
| 120 | * @return the BIFReader |
|---|
| 121 | * @throws Exception if processing fails |
|---|
| 122 | */ |
|---|
| 123 | public BIFReader processFile(String sFile) throws Exception { |
|---|
| 124 | m_sFile = sFile; |
|---|
| 125 | DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); |
|---|
| 126 | factory.setValidating(true); |
|---|
| 127 | Document doc = factory.newDocumentBuilder().parse(new File(sFile)); |
|---|
| 128 | doc.normalize(); |
|---|
| 129 | |
|---|
| 130 | buildInstances(doc, sFile); |
|---|
| 131 | buildStructure(doc); |
|---|
| 132 | return this; |
|---|
| 133 | } // processFile |
|---|
| 134 | |
|---|
| 135 | public BIFReader processString(String sStr) throws Exception { |
|---|
| 136 | DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); |
|---|
| 137 | factory.setValidating(true); |
|---|
| 138 | Document doc = factory.newDocumentBuilder().parse(new org.xml.sax.InputSource(new StringReader(sStr))); |
|---|
| 139 | doc.normalize(); |
|---|
| 140 | buildInstances(doc, "from-string"); |
|---|
| 141 | buildStructure(doc); |
|---|
| 142 | return this; |
|---|
| 143 | } // processString |
|---|
| 144 | |
|---|
| 145 | |
|---|
| 146 | /** the current filename */ |
|---|
| 147 | String m_sFile; |
|---|
| 148 | |
|---|
| 149 | /** |
|---|
| 150 | * returns the current filename |
|---|
| 151 | * |
|---|
| 152 | * @return the current filename |
|---|
| 153 | */ |
|---|
| 154 | public String getFileName() { |
|---|
| 155 | return m_sFile; |
|---|
| 156 | } |
|---|
| 157 | |
|---|
| 158 | |
|---|
| 159 | /** |
|---|
| 160 | * Returns an instance of a TechnicalInformation object, containing |
|---|
| 161 | * detailed information about the technical background of this class, |
|---|
| 162 | * e.g., paper reference or book this class is based on. |
|---|
| 163 | * |
|---|
| 164 | * @return the technical information about this class |
|---|
| 165 | */ |
|---|
| 166 | public TechnicalInformation getTechnicalInformation() { |
|---|
| 167 | TechnicalInformation result; |
|---|
| 168 | |
|---|
| 169 | result = new TechnicalInformation(Type.MISC); |
|---|
| 170 | result.setValue(Field.AUTHOR, "Fabio Cozman and Marek Druzdzel and Daniel Garcia"); |
|---|
| 171 | result.setValue(Field.YEAR, "1998"); |
|---|
| 172 | result.setValue(Field.TITLE, "XML BIF version 0.3"); |
|---|
| 173 | result.setValue(Field.URL, "http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/"); |
|---|
| 174 | |
|---|
| 175 | return result; |
|---|
| 176 | } |
|---|
| 177 | |
|---|
| 178 | /** buildStructure parses the BIF document in the DOM tree contained |
|---|
| 179 | * in the doc parameter and specifies the the network structure and |
|---|
| 180 | * probability tables. |
|---|
| 181 | * It assumes that buildInstances has been called before |
|---|
| 182 | * @param doc DOM document containing BIF document in DOM tree |
|---|
| 183 | * @throws Exception if building of structure fails |
|---|
| 184 | */ |
|---|
| 185 | void buildStructure(Document doc) throws Exception { |
|---|
| 186 | // Get the name of the network |
|---|
| 187 | // initialize conditional distribution tables |
|---|
| 188 | m_Distributions = new Estimator[m_Instances.numAttributes()][]; |
|---|
| 189 | for (int iNode = 0; iNode < m_Instances.numAttributes(); iNode++) { |
|---|
| 190 | // find definition that goes with this node |
|---|
| 191 | String sName = m_Instances.attribute(iNode).name(); |
|---|
| 192 | Element definition = getDefinition(doc, sName); |
|---|
| 193 | /* |
|---|
| 194 | if (nodelist.getLength() == 0) { |
|---|
| 195 | throw new Exception("No definition found for node " + sName); |
|---|
| 196 | } |
|---|
| 197 | if (nodelist.getLength() > 1) { |
|---|
| 198 | System.err.println("More than one definition found for node " + sName + ". Using first definition."); |
|---|
| 199 | } |
|---|
| 200 | Element definition = (Element) nodelist.item(0); |
|---|
| 201 | */ |
|---|
| 202 | |
|---|
| 203 | // get the parents for this node |
|---|
| 204 | // resolve structure |
|---|
| 205 | FastVector nodelist = getParentNodes(definition); |
|---|
| 206 | for (int iParent = 0; iParent < nodelist.size(); iParent++) { |
|---|
| 207 | Node parentName = ((Node) nodelist.elementAt(iParent)).getFirstChild(); |
|---|
| 208 | String sParentName = ((CharacterData) (parentName)).getData(); |
|---|
| 209 | int nParent = getNode(sParentName); |
|---|
| 210 | m_ParentSets[iNode].addParent(nParent, m_Instances); |
|---|
| 211 | } |
|---|
| 212 | // resolve conditional probability table |
|---|
| 213 | int nCardinality = m_ParentSets[iNode].getCardinalityOfParents(); |
|---|
| 214 | int nValues = m_Instances.attribute(iNode).numValues(); |
|---|
| 215 | m_Distributions[iNode] = new Estimator[nCardinality]; |
|---|
| 216 | for (int i = 0; i < nCardinality; i++) { |
|---|
| 217 | m_Distributions[iNode][i] = new DiscreteEstimatorBayes(nValues, 0.0f); |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | /* |
|---|
| 221 | StringBuffer sTable = new StringBuffer(); |
|---|
| 222 | for (int iText = 0; iText < nodelist.getLength(); iText++) { |
|---|
| 223 | sTable.append(((CharacterData) (nodelist.item(iText))).getData()); |
|---|
| 224 | sTable.append(' '); |
|---|
| 225 | } |
|---|
| 226 | StringTokenizer st = new StringTokenizer(sTable.toString()); |
|---|
| 227 | */ |
|---|
| 228 | String sTable = getTable(definition); |
|---|
| 229 | StringTokenizer st = new StringTokenizer(sTable.toString()); |
|---|
| 230 | |
|---|
| 231 | |
|---|
| 232 | for (int i = 0; i < nCardinality; i++) { |
|---|
| 233 | DiscreteEstimatorBayes d = (DiscreteEstimatorBayes) m_Distributions[iNode][i]; |
|---|
| 234 | for (int iValue = 0; iValue < nValues; iValue++) { |
|---|
| 235 | String sWeight = st.nextToken(); |
|---|
| 236 | d.addValue(iValue, new Double(sWeight).doubleValue()); |
|---|
| 237 | } |
|---|
| 238 | } |
|---|
| 239 | } |
|---|
| 240 | } // buildStructure |
|---|
| 241 | |
|---|
| 242 | /** synchronizes the node ordering of this Bayes network with |
|---|
| 243 | * those in the other network (if possible). |
|---|
| 244 | * @param other Bayes network to synchronize with |
|---|
| 245 | * @throws Exception if nr of attributes differs or not all of the variables have the same name. |
|---|
| 246 | */ |
|---|
| 247 | public void Sync(BayesNet other) throws Exception { |
|---|
| 248 | int nAtts = m_Instances.numAttributes(); |
|---|
| 249 | if (nAtts != other.m_Instances.numAttributes()) { |
|---|
| 250 | throw new Exception ("Cannot synchronize networks: different number of attributes."); |
|---|
| 251 | } |
|---|
| 252 | m_order = new int[nAtts]; |
|---|
| 253 | for (int iNode = 0; iNode < nAtts; iNode++) { |
|---|
| 254 | String sName = other.getNodeName(iNode); |
|---|
| 255 | m_order[getNode(sName)] = iNode; |
|---|
| 256 | } |
|---|
| 257 | } // Sync |
|---|
| 258 | |
|---|
| 259 | |
|---|
| 260 | /** |
|---|
| 261 | * Returns all TEXT children of the given node in one string. Between |
|---|
| 262 | * the node values new lines are inserted. |
|---|
| 263 | * |
|---|
| 264 | * @param node the node to return the content for |
|---|
| 265 | * @return the content of the node |
|---|
| 266 | */ |
|---|
| 267 | public String getContent(Element node) { |
|---|
| 268 | NodeList list; |
|---|
| 269 | Node item; |
|---|
| 270 | int i; |
|---|
| 271 | String result; |
|---|
| 272 | |
|---|
| 273 | result = ""; |
|---|
| 274 | list = node.getChildNodes(); |
|---|
| 275 | |
|---|
| 276 | for (i = 0; i < list.getLength(); i++) { |
|---|
| 277 | item = list.item(i); |
|---|
| 278 | if (item.getNodeType() == Node.TEXT_NODE) |
|---|
| 279 | result += "\n" + item.getNodeValue(); |
|---|
| 280 | } |
|---|
| 281 | |
|---|
| 282 | return result; |
|---|
| 283 | } |
|---|
| 284 | |
|---|
| 285 | |
|---|
| 286 | /** buildInstances parses the BIF document and creates a Bayes Net with its |
|---|
| 287 | * nodes specified, but leaves the network structure and probability tables empty. |
|---|
| 288 | * @param doc DOM document containing BIF document in DOM tree |
|---|
| 289 | * @param sName default name to give to the Bayes Net. Will be overridden if specified in the BIF document. |
|---|
| 290 | * @throws Exception if building fails |
|---|
| 291 | */ |
|---|
| 292 | void buildInstances(Document doc, String sName) throws Exception { |
|---|
| 293 | NodeList nodelist; |
|---|
| 294 | // Get the name of the network |
|---|
| 295 | nodelist = selectAllNames(doc); |
|---|
| 296 | if (nodelist.getLength() > 0) { |
|---|
| 297 | sName = ((CharacterData) (nodelist.item(0).getFirstChild())).getData(); |
|---|
| 298 | } |
|---|
| 299 | |
|---|
| 300 | // Process variables |
|---|
| 301 | nodelist = selectAllVariables(doc); |
|---|
| 302 | int nNodes = nodelist.getLength(); |
|---|
| 303 | // initialize structure |
|---|
| 304 | FastVector attInfo = new FastVector(nNodes); |
|---|
| 305 | |
|---|
| 306 | // Initialize |
|---|
| 307 | m_nPositionX = new int[nodelist.getLength()]; |
|---|
| 308 | m_nPositionY = new int[nodelist.getLength()]; |
|---|
| 309 | |
|---|
| 310 | // Process variables |
|---|
| 311 | for (int iNode = 0; iNode < nodelist.getLength(); iNode++) { |
|---|
| 312 | // Get element |
|---|
| 313 | FastVector valueslist; |
|---|
| 314 | // Get the name of the network |
|---|
| 315 | valueslist = selectOutCome(nodelist.item(iNode)); |
|---|
| 316 | |
|---|
| 317 | int nValues = valueslist.size(); |
|---|
| 318 | // generate value strings |
|---|
| 319 | FastVector nomStrings = new FastVector(nValues + 1); |
|---|
| 320 | for (int iValue = 0; iValue < nValues; iValue++) { |
|---|
| 321 | Node node = ((Node) valueslist.elementAt(iValue)).getFirstChild(); |
|---|
| 322 | String sValue = ((CharacterData) (node)).getData(); |
|---|
| 323 | if (sValue == null) { |
|---|
| 324 | sValue = "Value" + (iValue + 1); |
|---|
| 325 | } |
|---|
| 326 | nomStrings.addElement(sValue); |
|---|
| 327 | } |
|---|
| 328 | FastVector nodelist2; |
|---|
| 329 | // Get the name of the network |
|---|
| 330 | nodelist2 = selectName(nodelist.item(iNode)); |
|---|
| 331 | if (nodelist2.size() == 0) { |
|---|
| 332 | throw new Exception ("No name specified for variable"); |
|---|
| 333 | } |
|---|
| 334 | String sNodeName = ((CharacterData) (((Node) nodelist2.elementAt(0)).getFirstChild())).getData(); |
|---|
| 335 | |
|---|
| 336 | weka.core.Attribute att = new weka.core.Attribute(sNodeName, nomStrings); |
|---|
| 337 | attInfo.addElement(att); |
|---|
| 338 | |
|---|
| 339 | valueslist = selectProperty(nodelist.item(iNode)); |
|---|
| 340 | nValues = valueslist.size(); |
|---|
| 341 | // generate value strings |
|---|
| 342 | for (int iValue = 0; iValue < nValues; iValue++) { |
|---|
| 343 | // parsing for strings of the form "position = (73, 165)" |
|---|
| 344 | Node node = ((Node)valueslist.elementAt(iValue)).getFirstChild(); |
|---|
| 345 | String sValue = ((CharacterData) (node)).getData(); |
|---|
| 346 | if (sValue.startsWith("position")) { |
|---|
| 347 | int i0 = sValue.indexOf('('); |
|---|
| 348 | int i1 = sValue.indexOf(','); |
|---|
| 349 | int i2 = sValue.indexOf(')'); |
|---|
| 350 | String sX = sValue.substring(i0 + 1, i1).trim(); |
|---|
| 351 | String sY = sValue.substring(i1 + 1, i2).trim(); |
|---|
| 352 | try { |
|---|
| 353 | m_nPositionX[iNode] = (int) Integer.parseInt(sX); |
|---|
| 354 | m_nPositionY[iNode] = (int) Integer.parseInt(sY); |
|---|
| 355 | } catch (NumberFormatException e) { |
|---|
| 356 | System.err.println("Wrong number format in position :(" + sX + "," + sY +")"); |
|---|
| 357 | m_nPositionX[iNode] = 0; |
|---|
| 358 | m_nPositionY[iNode] = 0; |
|---|
| 359 | } |
|---|
| 360 | } |
|---|
| 361 | } |
|---|
| 362 | |
|---|
| 363 | } |
|---|
| 364 | |
|---|
| 365 | m_Instances = new Instances(sName, attInfo, 100); |
|---|
| 366 | m_Instances.setClassIndex(nNodes - 1); |
|---|
| 367 | setUseADTree(false); |
|---|
| 368 | initStructure(); |
|---|
| 369 | } // buildInstances |
|---|
| 370 | |
|---|
| 371 | // /** selectNodeList selects list of nodes from document specified in XPath expression |
|---|
| 372 | // * @param doc : document (or node) to query |
|---|
| 373 | // * @param sXPath : XPath expression |
|---|
| 374 | // * @return list of nodes conforming to XPath expression in doc |
|---|
| 375 | // * @throws Exception |
|---|
| 376 | // */ |
|---|
| 377 | // private NodeList selectNodeList(Node doc, String sXPath) throws Exception { |
|---|
| 378 | // NodeList nodelist = org.apache.xpath.XPathAPI.selectNodeList(doc, sXPath); |
|---|
| 379 | // return nodelist; |
|---|
| 380 | // } // selectNodeList |
|---|
| 381 | |
|---|
| 382 | NodeList selectAllNames(Document doc) throws Exception { |
|---|
| 383 | //NodeList nodelist = selectNodeList(doc, "//NAME"); |
|---|
| 384 | NodeList nodelist = doc.getElementsByTagName("NAME"); |
|---|
| 385 | return nodelist; |
|---|
| 386 | } // selectAllNames |
|---|
| 387 | |
|---|
| 388 | NodeList selectAllVariables(Document doc) throws Exception { |
|---|
| 389 | //NodeList nodelist = selectNodeList(doc, "//VARIABLE"); |
|---|
| 390 | NodeList nodelist = doc.getElementsByTagName("VARIABLE"); |
|---|
| 391 | return nodelist; |
|---|
| 392 | } // selectAllVariables |
|---|
| 393 | |
|---|
| 394 | Element getDefinition(Document doc, String sName) throws Exception { |
|---|
| 395 | //NodeList nodelist = selectNodeList(doc, "//DEFINITION[normalize-space(FOR/text())=\"" + sName + "\"]"); |
|---|
| 396 | |
|---|
| 397 | NodeList nodelist = doc.getElementsByTagName("DEFINITION"); |
|---|
| 398 | for (int iNode = 0; iNode < nodelist.getLength(); iNode++) { |
|---|
| 399 | Node node = nodelist.item(iNode); |
|---|
| 400 | FastVector list = selectElements(node, "FOR"); |
|---|
| 401 | if (list.size() > 0) { |
|---|
| 402 | Node forNode = (Node) list.elementAt(0); |
|---|
| 403 | if (getContent((Element) forNode).trim().equals(sName)) { |
|---|
| 404 | return (Element) node; |
|---|
| 405 | } |
|---|
| 406 | } |
|---|
| 407 | } |
|---|
| 408 | throw new Exception("Could not find definition for ((" + sName + "))"); |
|---|
| 409 | } // getDefinition |
|---|
| 410 | |
|---|
| 411 | FastVector getParentNodes(Node definition) throws Exception { |
|---|
| 412 | //NodeList nodelist = selectNodeList(definition, "GIVEN"); |
|---|
| 413 | FastVector nodelist = selectElements(definition, "GIVEN"); |
|---|
| 414 | return nodelist; |
|---|
| 415 | } // getParentNodes |
|---|
| 416 | |
|---|
| 417 | String getTable(Node definition) throws Exception { |
|---|
| 418 | //NodeList nodelist = selectNodeList(definition, "TABLE/text()"); |
|---|
| 419 | FastVector nodelist = selectElements(definition, "TABLE"); |
|---|
| 420 | String sTable = getContent((Element) nodelist.elementAt(0)); |
|---|
| 421 | sTable = sTable.replaceAll("\\n"," "); |
|---|
| 422 | return sTable; |
|---|
| 423 | } // getTable |
|---|
| 424 | |
|---|
| 425 | FastVector selectOutCome(Node item) throws Exception { |
|---|
| 426 | //NodeList nodelist = selectNodeList(item, "OUTCOME"); |
|---|
| 427 | FastVector nodelist = selectElements(item, "OUTCOME"); |
|---|
| 428 | return nodelist; |
|---|
| 429 | } // selectOutCome |
|---|
| 430 | |
|---|
| 431 | FastVector selectName(Node item) throws Exception { |
|---|
| 432 | //NodeList nodelist = selectNodeList(item, "NAME"); |
|---|
| 433 | FastVector nodelist = selectElements(item, "NAME"); |
|---|
| 434 | return nodelist; |
|---|
| 435 | } // selectName |
|---|
| 436 | |
|---|
| 437 | FastVector selectProperty(Node item) throws Exception { |
|---|
| 438 | // NodeList nodelist = selectNodeList(item, "PROPERTY"); |
|---|
| 439 | FastVector nodelist = selectElements(item, "PROPERTY"); |
|---|
| 440 | return nodelist; |
|---|
| 441 | } // selectProperty |
|---|
| 442 | |
|---|
| 443 | FastVector selectElements(Node item, String sElement) throws Exception { |
|---|
| 444 | NodeList children = item.getChildNodes(); |
|---|
| 445 | FastVector nodelist = new FastVector(); |
|---|
| 446 | for (int iNode = 0; iNode < children.getLength(); iNode++) { |
|---|
| 447 | Node node = children.item(iNode); |
|---|
| 448 | if ((node.getNodeType() == Node.ELEMENT_NODE) && node.getNodeName().equals(sElement)) { |
|---|
| 449 | nodelist.addElement(node); |
|---|
| 450 | } |
|---|
| 451 | } |
|---|
| 452 | return nodelist; |
|---|
| 453 | } // selectElements |
|---|
| 454 | /** Count nr of arcs missing from other network compared to current network |
|---|
| 455 | * Note that an arc is not 'missing' if it is reversed. |
|---|
| 456 | * @param other network to compare with |
|---|
| 457 | * @return nr of missing arcs |
|---|
| 458 | */ |
|---|
| 459 | public int missingArcs(BayesNet other) { |
|---|
| 460 | try { |
|---|
| 461 | Sync(other); |
|---|
| 462 | int nMissing = 0; |
|---|
| 463 | for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) { |
|---|
| 464 | for (int iParent = 0; iParent < m_ParentSets[iAttribute].getNrOfParents(); iParent++) { |
|---|
| 465 | int nParent = m_ParentSets[iAttribute].getParent(iParent); |
|---|
| 466 | if (!other.getParentSet(m_order[iAttribute]).contains(m_order[nParent]) && !other.getParentSet(m_order[nParent]).contains(m_order[iAttribute])) { |
|---|
| 467 | nMissing++; |
|---|
| 468 | } |
|---|
| 469 | } |
|---|
| 470 | } |
|---|
| 471 | return nMissing; |
|---|
| 472 | } catch (Exception e) { |
|---|
| 473 | System.err.println(e.getMessage()); |
|---|
| 474 | return 0; |
|---|
| 475 | } |
|---|
| 476 | } // missingArcs |
|---|
| 477 | |
|---|
| 478 | /** Count nr of exta arcs from other network compared to current network |
|---|
| 479 | * Note that an arc is not 'extra' if it is reversed. |
|---|
| 480 | * @param other network to compare with |
|---|
| 481 | * @return nr of missing arcs |
|---|
| 482 | */ |
|---|
| 483 | public int extraArcs(BayesNet other) { |
|---|
| 484 | try { |
|---|
| 485 | Sync(other); |
|---|
| 486 | int nExtra = 0; |
|---|
| 487 | for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) { |
|---|
| 488 | for (int iParent = 0; iParent < other.getParentSet(m_order[iAttribute]).getNrOfParents(); iParent++) { |
|---|
| 489 | int nParent = m_order[other.getParentSet(m_order[iAttribute]).getParent(iParent)]; |
|---|
| 490 | if (!m_ParentSets[iAttribute].contains(nParent) && !m_ParentSets[nParent].contains(iAttribute)) { |
|---|
| 491 | nExtra++; |
|---|
| 492 | } |
|---|
| 493 | } |
|---|
| 494 | } |
|---|
| 495 | return nExtra; |
|---|
| 496 | } catch (Exception e) { |
|---|
| 497 | System.err.println(e.getMessage()); |
|---|
| 498 | return 0; |
|---|
| 499 | } |
|---|
| 500 | } // extraArcs |
|---|
| 501 | |
|---|
| 502 | |
|---|
| 503 | /** calculates the divergence between the probability distribution |
|---|
| 504 | * represented by this network and that of another, that is, |
|---|
| 505 | * \sum_{x\in X} P(x)log P(x)/Q(x) |
|---|
| 506 | * where X is the set of values the nodes in the network can take, |
|---|
| 507 | * P(x) the probability of this network for configuration x |
|---|
| 508 | * Q(x) the probability of the other network for configuration x |
|---|
| 509 | * @param other network to compare with |
|---|
| 510 | * @return divergence between this and other Bayes Network |
|---|
| 511 | */ |
|---|
| 512 | public double divergence(BayesNet other) { |
|---|
| 513 | try { |
|---|
| 514 | Sync(other); |
|---|
| 515 | // D: divergence |
|---|
| 516 | double D = 0.0; |
|---|
| 517 | int nNodes = m_Instances.numAttributes(); |
|---|
| 518 | int [] nCard = new int[nNodes]; |
|---|
| 519 | for (int iNode = 0; iNode < nNodes; iNode++) { |
|---|
| 520 | nCard[iNode] = m_Instances.attribute(iNode).numValues(); |
|---|
| 521 | } |
|---|
| 522 | // x: holds current configuration of nodes |
|---|
| 523 | int [] x = new int[nNodes]; |
|---|
| 524 | // simply sum over all configurations to calc divergence D |
|---|
| 525 | int i = 0; |
|---|
| 526 | while (i < nNodes) { |
|---|
| 527 | // update configuration |
|---|
| 528 | x[i]++; |
|---|
| 529 | while (i < nNodes && x[i] == m_Instances.attribute(i).numValues()) { |
|---|
| 530 | x[i] = 0; |
|---|
| 531 | i++; |
|---|
| 532 | if (i < nNodes){ |
|---|
| 533 | x[i]++; |
|---|
| 534 | } |
|---|
| 535 | } |
|---|
| 536 | if (i < nNodes) { |
|---|
| 537 | i = 0; |
|---|
| 538 | // calc P(x) and Q(x) |
|---|
| 539 | double P = 1.0; |
|---|
| 540 | for (int iNode = 0; iNode < nNodes; iNode++) { |
|---|
| 541 | int iCPT = 0; |
|---|
| 542 | for (int iParent = 0; iParent < m_ParentSets[iNode].getNrOfParents(); iParent++) { |
|---|
| 543 | int nParent = m_ParentSets[iNode].getParent(iParent); |
|---|
| 544 | iCPT = iCPT * nCard[nParent] + x[nParent]; |
|---|
| 545 | } |
|---|
| 546 | P = P * m_Distributions[iNode][iCPT].getProbability(x[iNode]); |
|---|
| 547 | } |
|---|
| 548 | |
|---|
| 549 | double Q = 1.0; |
|---|
| 550 | for (int iNode = 0; iNode < nNodes; iNode++) { |
|---|
| 551 | int iCPT = 0; |
|---|
| 552 | for (int iParent = 0; iParent < other.getParentSet(m_order[iNode]).getNrOfParents(); iParent++) { |
|---|
| 553 | int nParent = m_order[other.getParentSet(m_order[iNode]).getParent(iParent)]; |
|---|
| 554 | iCPT = iCPT * nCard[nParent] + x[nParent]; |
|---|
| 555 | } |
|---|
| 556 | Q = Q * other.m_Distributions[m_order[iNode]][iCPT].getProbability(x[iNode]); |
|---|
| 557 | } |
|---|
| 558 | |
|---|
| 559 | // update divergence if probabilities are positive |
|---|
| 560 | if (P > 0.0 && Q > 0.0) { |
|---|
| 561 | D = D + P * Math.log(Q / P); |
|---|
| 562 | } |
|---|
| 563 | } |
|---|
| 564 | } |
|---|
| 565 | return D; |
|---|
| 566 | } catch (Exception e) { |
|---|
| 567 | System.err.println(e.getMessage()); |
|---|
| 568 | return 0; |
|---|
| 569 | } |
|---|
| 570 | } // divergence |
|---|
| 571 | |
|---|
| 572 | /** Count nr of reversed arcs from other network compared to current network |
|---|
| 573 | * @param other network to compare with |
|---|
| 574 | * @return nr of missing arcs |
|---|
| 575 | */ |
|---|
| 576 | public int reversedArcs(BayesNet other) { |
|---|
| 577 | try { |
|---|
| 578 | Sync(other); |
|---|
| 579 | int nReversed = 0; |
|---|
| 580 | for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) { |
|---|
| 581 | for (int iParent = 0; iParent < m_ParentSets[iAttribute].getNrOfParents(); iParent++) { |
|---|
| 582 | int nParent = m_ParentSets[iAttribute].getParent(iParent); |
|---|
| 583 | if (!other.getParentSet(m_order[iAttribute]).contains(m_order[nParent]) && other.getParentSet(m_order[nParent]).contains(m_order[iAttribute])) { |
|---|
| 584 | nReversed++; |
|---|
| 585 | } |
|---|
| 586 | } |
|---|
| 587 | } |
|---|
| 588 | return nReversed; |
|---|
| 589 | } catch (Exception e) { |
|---|
| 590 | System.err.println(e.getMessage()); |
|---|
| 591 | return 0; |
|---|
| 592 | } |
|---|
| 593 | } // reversedArcs |
|---|
| 594 | /** getNode finds the index of the node with name sNodeName |
|---|
| 595 | * and throws an exception if no such node can be found. |
|---|
| 596 | * @param sNodeName name of the node to get the index from |
|---|
| 597 | * @return index of the node with name sNodeName |
|---|
| 598 | * @throws Exception if node cannot be found |
|---|
| 599 | */ |
|---|
| 600 | public int getNode(String sNodeName) throws Exception { |
|---|
| 601 | int iNode = 0; |
|---|
| 602 | while (iNode < m_Instances.numAttributes()) { |
|---|
| 603 | if (m_Instances.attribute(iNode).name().equals(sNodeName)) { |
|---|
| 604 | return iNode; |
|---|
| 605 | } |
|---|
| 606 | iNode++; |
|---|
| 607 | } |
|---|
| 608 | throw new Exception("Could not find node [[" + sNodeName + "]]"); |
|---|
| 609 | } // getNode |
|---|
| 610 | |
|---|
| 611 | /** |
|---|
| 612 | * the default constructor |
|---|
| 613 | */ |
|---|
| 614 | public BIFReader() { |
|---|
| 615 | } |
|---|
| 616 | |
|---|
| 617 | /** |
|---|
| 618 | * Returns the revision string. |
|---|
| 619 | * |
|---|
| 620 | * @return the revision |
|---|
| 621 | */ |
|---|
| 622 | public String getRevision() { |
|---|
| 623 | return RevisionUtils.extract("$Revision: 1.15 $"); |
|---|
| 624 | } |
|---|
| 625 | |
|---|
| 626 | /** |
|---|
| 627 | * Loads the file specified as first parameter and prints it to stdout. |
|---|
| 628 | * |
|---|
| 629 | * @param args the command line parameters |
|---|
| 630 | */ |
|---|
| 631 | public static void main(String[] args) { |
|---|
| 632 | try { |
|---|
| 633 | BIFReader br = new BIFReader(); |
|---|
| 634 | br.processFile(args[0]); |
|---|
| 635 | System.out.println(br.toString()); |
|---|
| 636 | |
|---|
| 637 | } |
|---|
| 638 | catch (Throwable t) { |
|---|
| 639 | t.printStackTrace(); |
|---|
| 640 | } |
|---|
| 641 | } // main |
|---|
| 642 | } // class BIFReader |
|---|
| 643 | |
|---|