| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * Prior.java |
|---|
| 19 | * Copyright (C) 2008 Illinois Institute of Technology |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.bayes.blr; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.bayes.BayesianLogisticRegression; |
|---|
| 26 | import weka.core.Instance; |
|---|
| 27 | import weka.core.Instances; |
|---|
| 28 | import weka.core.RevisionHandler; |
|---|
| 29 | |
|---|
| 30 | import java.io.Serializable; |
|---|
| 31 | |
|---|
| 32 | /** |
|---|
| 33 | * This is an interface to plug various priors into |
|---|
| 34 | * the Bayesian Logistic Regression Model. |
|---|
| 35 | * |
|---|
| 36 | * @version $Revision: 1.2 $ |
|---|
| 37 | * @author Navendu Garg (gargnav@iit.edu) |
|---|
| 38 | */ |
|---|
| 39 | public abstract class Prior |
|---|
| 40 | implements Serializable, RevisionHandler { |
|---|
| 41 | |
|---|
| 42 | protected Instances m_Instances; |
|---|
| 43 | protected double Beta = 0.0; |
|---|
| 44 | protected double Hyperparameter = 0.0; |
|---|
| 45 | protected double DeltaUpdate; |
|---|
| 46 | protected double[] R; |
|---|
| 47 | protected double Delta = 0.0; |
|---|
| 48 | protected double log_posterior = 0.0; |
|---|
| 49 | protected double log_likelihood = 0.0; |
|---|
| 50 | protected double penalty = 0.0; |
|---|
| 51 | |
|---|
| 52 | /** |
|---|
| 53 | * Interface for the update functions for different types of |
|---|
| 54 | * priors. |
|---|
| 55 | * |
|---|
| 56 | */ |
|---|
| 57 | public double update(int j, Instances instances, double beta, |
|---|
| 58 | double hyperparameter, double[] r, double deltaV) { |
|---|
| 59 | return 0.0; |
|---|
| 60 | } |
|---|
| 61 | |
|---|
| 62 | /** |
|---|
| 63 | * Function computes the log-likelihood value: |
|---|
| 64 | * -sum{1 to n}{ln(1+exp(-Beta*x(i)*y(i))} |
|---|
| 65 | * @param betas |
|---|
| 66 | * @param instances |
|---|
| 67 | */ |
|---|
| 68 | public void computelogLikelihood(double[] betas, Instances instances) { |
|---|
| 69 | Instance instance; |
|---|
| 70 | log_likelihood = 0.0; |
|---|
| 71 | |
|---|
| 72 | for (int i = 0; i < instances.numInstances(); i++) { |
|---|
| 73 | instance = instances.instance(i); |
|---|
| 74 | |
|---|
| 75 | double log_row = 0.0; |
|---|
| 76 | |
|---|
| 77 | for (int j = 0; j < instance.numAttributes(); j++) { |
|---|
| 78 | if (instance.value(j) != 0.0) { |
|---|
| 79 | log_row += (betas[j] * instance.value(j) * instance.value(j)); |
|---|
| 80 | } |
|---|
| 81 | } |
|---|
| 82 | |
|---|
| 83 | log_row = log_row * BayesianLogisticRegression.classSgn(instance.classValue()); |
|---|
| 84 | log_likelihood += Math.log(1.0 + Math.exp(0.0 - log_row)); |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | log_likelihood = 0 - log_likelihood; |
|---|
| 88 | } |
|---|
| 89 | |
|---|
| 90 | /** |
|---|
| 91 | * Skeleton function to compute penalty terms. |
|---|
| 92 | * @param betas |
|---|
| 93 | * @param hyperparameters |
|---|
| 94 | */ |
|---|
| 95 | public void computePenalty(double[] betas, double[] hyperparameters) { |
|---|
| 96 | //implement specific penalties in the prior implmentation. |
|---|
| 97 | } |
|---|
| 98 | |
|---|
| 99 | /** |
|---|
| 100 | * |
|---|
| 101 | * @return log-likelihood value. |
|---|
| 102 | */ |
|---|
| 103 | public double getLoglikelihood() { |
|---|
| 104 | return log_likelihood; |
|---|
| 105 | } |
|---|
| 106 | |
|---|
| 107 | /** |
|---|
| 108 | * |
|---|
| 109 | * @return regularized log posterior value. |
|---|
| 110 | */ |
|---|
| 111 | public double getLogPosterior() { |
|---|
| 112 | log_posterior = log_likelihood + penalty; |
|---|
| 113 | |
|---|
| 114 | return log_posterior; |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | /** |
|---|
| 118 | * |
|---|
| 119 | * @return penalty term. |
|---|
| 120 | */ |
|---|
| 121 | public double getPenalty() { |
|---|
| 122 | return penalty; |
|---|
| 123 | } |
|---|
| 124 | } |
|---|