1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Prior.java |
---|
19 | * Copyright (C) 2008 Illinois Institute of Technology |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes.blr; |
---|
24 | |
---|
25 | import weka.classifiers.bayes.BayesianLogisticRegression; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.RevisionHandler; |
---|
29 | |
---|
30 | import java.io.Serializable; |
---|
31 | |
---|
32 | /** |
---|
33 | * This is an interface to plug various priors into |
---|
34 | * the Bayesian Logistic Regression Model. |
---|
35 | * |
---|
36 | * @version $Revision: 1.2 $ |
---|
37 | * @author Navendu Garg (gargnav@iit.edu) |
---|
38 | */ |
---|
39 | public abstract class Prior |
---|
40 | implements Serializable, RevisionHandler { |
---|
41 | |
---|
42 | protected Instances m_Instances; |
---|
43 | protected double Beta = 0.0; |
---|
44 | protected double Hyperparameter = 0.0; |
---|
45 | protected double DeltaUpdate; |
---|
46 | protected double[] R; |
---|
47 | protected double Delta = 0.0; |
---|
48 | protected double log_posterior = 0.0; |
---|
49 | protected double log_likelihood = 0.0; |
---|
50 | protected double penalty = 0.0; |
---|
51 | |
---|
52 | /** |
---|
53 | * Interface for the update functions for different types of |
---|
54 | * priors. |
---|
55 | * |
---|
56 | */ |
---|
57 | public double update(int j, Instances instances, double beta, |
---|
58 | double hyperparameter, double[] r, double deltaV) { |
---|
59 | return 0.0; |
---|
60 | } |
---|
61 | |
---|
62 | /** |
---|
63 | * Function computes the log-likelihood value: |
---|
64 | * -sum{1 to n}{ln(1+exp(-Beta*x(i)*y(i))} |
---|
65 | * @param betas |
---|
66 | * @param instances |
---|
67 | */ |
---|
68 | public void computelogLikelihood(double[] betas, Instances instances) { |
---|
69 | Instance instance; |
---|
70 | log_likelihood = 0.0; |
---|
71 | |
---|
72 | for (int i = 0; i < instances.numInstances(); i++) { |
---|
73 | instance = instances.instance(i); |
---|
74 | |
---|
75 | double log_row = 0.0; |
---|
76 | |
---|
77 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
78 | if (instance.value(j) != 0.0) { |
---|
79 | log_row += (betas[j] * instance.value(j) * instance.value(j)); |
---|
80 | } |
---|
81 | } |
---|
82 | |
---|
83 | log_row = log_row * BayesianLogisticRegression.classSgn(instance.classValue()); |
---|
84 | log_likelihood += Math.log(1.0 + Math.exp(0.0 - log_row)); |
---|
85 | } |
---|
86 | |
---|
87 | log_likelihood = 0 - log_likelihood; |
---|
88 | } |
---|
89 | |
---|
90 | /** |
---|
91 | * Skeleton function to compute penalty terms. |
---|
92 | * @param betas |
---|
93 | * @param hyperparameters |
---|
94 | */ |
---|
95 | public void computePenalty(double[] betas, double[] hyperparameters) { |
---|
96 | //implement specific penalties in the prior implmentation. |
---|
97 | } |
---|
98 | |
---|
99 | /** |
---|
100 | * |
---|
101 | * @return log-likelihood value. |
---|
102 | */ |
---|
103 | public double getLoglikelihood() { |
---|
104 | return log_likelihood; |
---|
105 | } |
---|
106 | |
---|
107 | /** |
---|
108 | * |
---|
109 | * @return regularized log posterior value. |
---|
110 | */ |
---|
111 | public double getLogPosterior() { |
---|
112 | log_posterior = log_likelihood + penalty; |
---|
113 | |
---|
114 | return log_posterior; |
---|
115 | } |
---|
116 | |
---|
117 | /** |
---|
118 | * |
---|
119 | * @return penalty term. |
---|
120 | */ |
---|
121 | public double getPenalty() { |
---|
122 | return penalty; |
---|
123 | } |
---|
124 | } |
---|