1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * GaussianPrior.java |
---|
19 | * Copyright (C) 2008 Illinois Institute of Technology |
---|
20 | * |
---|
21 | */ |
---|
22 | package weka.classifiers.bayes.blr; |
---|
23 | |
---|
24 | import weka.classifiers.bayes.BayesianLogisticRegression; |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | |
---|
29 | /** |
---|
30 | * Implementation of the Gaussian Prior update function based on modified |
---|
31 | * CLG Algorithm (CLG-Lasso) with a certain Trust Region Update based |
---|
32 | * on Laplace Priors. |
---|
33 | * |
---|
34 | * @author Navendu Garg(gargnav@iit.edu) |
---|
35 | * @version $Revision: 4899 $ |
---|
36 | */ |
---|
37 | public class LaplacePriorImpl |
---|
38 | extends Prior { |
---|
39 | |
---|
40 | /** for serialization. */ |
---|
41 | private static final long serialVersionUID = 2353576123257012607L; |
---|
42 | |
---|
43 | Instances m_Instances; |
---|
44 | double Beta; |
---|
45 | double Hyperparameter; |
---|
46 | double DeltaUpdate; |
---|
47 | double[] R; |
---|
48 | double Delta; |
---|
49 | |
---|
50 | /** |
---|
51 | * Update function specific to Laplace Prior. |
---|
52 | */ |
---|
53 | public double update(int j, Instances instances, double beta, |
---|
54 | double hyperparameter, double[] r, double deltaV) { |
---|
55 | double sign = 0.0; |
---|
56 | double change = 0.0; |
---|
57 | DeltaUpdate = 0.0; |
---|
58 | m_Instances = instances; |
---|
59 | Beta = beta; |
---|
60 | Hyperparameter = hyperparameter; |
---|
61 | R = r; |
---|
62 | Delta = deltaV; |
---|
63 | |
---|
64 | if (Beta == 0) { |
---|
65 | sign = 1.0; |
---|
66 | DeltaUpdate = laplaceUpdate(j, sign); |
---|
67 | |
---|
68 | if (DeltaUpdate <= 0.0) { // positive direction failed. |
---|
69 | sign = -1.0; |
---|
70 | DeltaUpdate = laplaceUpdate(j, sign); |
---|
71 | |
---|
72 | if (DeltaUpdate >= 0.0) { |
---|
73 | DeltaUpdate = 0; |
---|
74 | } |
---|
75 | } |
---|
76 | } else { |
---|
77 | sign = Beta / Math.abs(Beta); |
---|
78 | DeltaUpdate = laplaceUpdate(j, sign); |
---|
79 | change = Beta + DeltaUpdate; |
---|
80 | change = change / Math.abs(change); |
---|
81 | |
---|
82 | if (change < 0) { |
---|
83 | DeltaUpdate = 0 - Beta; |
---|
84 | } |
---|
85 | } |
---|
86 | |
---|
87 | return DeltaUpdate; |
---|
88 | } |
---|
89 | |
---|
90 | /** |
---|
91 | * This is the CLG-lasso update function described in the |
---|
92 | |
---|
93 | *<pre> |
---|
94 | * @TechReport{blrtext04, |
---|
95 | *author = {Alexander Genkin and David D. Lewis and David Madigan}, |
---|
96 | *title = {Large-scale bayesian logistic regression for text categorization}, |
---|
97 | *institution = {DIMACS}, |
---|
98 | *year = {2004}, |
---|
99 | *url = "http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf", |
---|
100 | *OPTannote = {} |
---|
101 | *}</pre> |
---|
102 | * |
---|
103 | * @param j |
---|
104 | * @return double value |
---|
105 | */ |
---|
106 | public double laplaceUpdate(int j, double sign) { |
---|
107 | double value = 0.0; |
---|
108 | double numerator = 0.0; |
---|
109 | double denominator = 0.0; |
---|
110 | |
---|
111 | Instance instance; |
---|
112 | |
---|
113 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
114 | instance = m_Instances.instance(i); |
---|
115 | |
---|
116 | if (instance.value(j) != 0) { |
---|
117 | numerator += (instance.value(j) * BayesianLogisticRegression.classSgn(instance.classValue()) * (1.0 / (1.0 + |
---|
118 | Math.exp(R[i])))); |
---|
119 | denominator += (instance.value(j) * instance.value(j) * BayesianLogisticRegression.bigF(R[i], |
---|
120 | Delta * instance.value(j))); |
---|
121 | } |
---|
122 | } |
---|
123 | |
---|
124 | numerator -= (Math.sqrt(2.0 / Hyperparameter) * sign); |
---|
125 | |
---|
126 | if (denominator != 0.0) { |
---|
127 | value = numerator / denominator; |
---|
128 | } |
---|
129 | |
---|
130 | return value; |
---|
131 | } |
---|
132 | |
---|
133 | /** |
---|
134 | * Computes the log-likelihood values using the implementation in the Prior class. |
---|
135 | * @param betas |
---|
136 | * @param instances |
---|
137 | */ |
---|
138 | public void computeLogLikelihood(double[] betas, Instances instances) { |
---|
139 | //Basic implementation done in the prior class. |
---|
140 | super.computelogLikelihood(betas, instances); |
---|
141 | } |
---|
142 | |
---|
143 | /** |
---|
144 | * This function computes the penalty term specific to Laplacian distribution. |
---|
145 | * @param betas |
---|
146 | * @param hyperparameters |
---|
147 | */ |
---|
148 | public void computePenalty(double[] betas, double[] hyperparameters) { |
---|
149 | penalty = 0.0; |
---|
150 | |
---|
151 | double lambda = 0.0; |
---|
152 | |
---|
153 | for (int j = 0; j < betas.length; j++) { |
---|
154 | lambda = Math.sqrt(hyperparameters[j]); |
---|
155 | penalty += (Math.log(2) - Math.log(lambda) + |
---|
156 | (lambda * Math.abs(betas[j]))); |
---|
157 | } |
---|
158 | |
---|
159 | penalty = 0 - penalty; |
---|
160 | } |
---|
161 | |
---|
162 | /** |
---|
163 | * Returns the revision string. |
---|
164 | * |
---|
165 | * @return the revision |
---|
166 | */ |
---|
167 | public String getRevision() { |
---|
168 | return RevisionUtils.extract("$Revision: 4899 $"); |
---|
169 | } |
---|
170 | } |
---|