| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * GaussianPrior.java |
|---|
| 19 | * Copyright (C) 2008 Illinois Institute of Technology |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | package weka.classifiers.bayes.blr; |
|---|
| 23 | |
|---|
| 24 | import weka.classifiers.bayes.BayesianLogisticRegression; |
|---|
| 25 | |
|---|
| 26 | import weka.core.Instance; |
|---|
| 27 | import weka.core.Instances; |
|---|
| 28 | import weka.core.RevisionUtils; |
|---|
| 29 | |
|---|
| 30 | /** |
|---|
| 31 | * Implementation of the Gaussian Prior update function based on |
|---|
| 32 | * CLG Algorithm with a certain Trust Region Update. |
|---|
| 33 | * |
|---|
| 34 | * The values are updated in the BayesianLogisticRegressionV variables |
|---|
| 35 | * used by the algorithm. |
|---|
| 36 | * |
|---|
| 37 | * |
|---|
| 38 | * @author Navendu Garg(gargnav@iit.edu) |
|---|
| 39 | * @version $Revision: 1.2 $ |
|---|
| 40 | */ |
|---|
| 41 | public class GaussianPriorImpl |
|---|
| 42 | extends Prior { |
|---|
| 43 | |
|---|
| 44 | /** for serialization. */ |
|---|
| 45 | private static final long serialVersionUID = -2995684220141159223L; |
|---|
| 46 | |
|---|
| 47 | /** |
|---|
| 48 | * Update function specific to Laplace Prior. |
|---|
| 49 | */ |
|---|
| 50 | public double update(int j, Instances instances, double beta, |
|---|
| 51 | double hyperparameter, double[] r, double deltaV) { |
|---|
| 52 | int i; |
|---|
| 53 | double numerator = 0.0; |
|---|
| 54 | double denominator = 0.0; |
|---|
| 55 | double value = 0.0; |
|---|
| 56 | Instance instance; |
|---|
| 57 | |
|---|
| 58 | m_Instances = instances; |
|---|
| 59 | Beta = beta; |
|---|
| 60 | Hyperparameter = hyperparameter; |
|---|
| 61 | Delta = deltaV; |
|---|
| 62 | R = r; |
|---|
| 63 | |
|---|
| 64 | //Compute First Derivative i.e. Numerator |
|---|
| 65 | //Compute the Second Derivative i.e. |
|---|
| 66 | for (i = 0; i < m_Instances.numInstances(); i++) { |
|---|
| 67 | instance = m_Instances.instance(i); |
|---|
| 68 | |
|---|
| 69 | if (instance.value(j) != 0) { |
|---|
| 70 | //Compute Numerator (Note: (0.0-1.0/(1.0+Math.exp(R[i]) |
|---|
| 71 | numerator += ((instance.value(j) * BayesianLogisticRegression.classSgn(instance.classValue())) * (0.0 - |
|---|
| 72 | (1.0 / (1.0 + Math.exp(R[i]))))); |
|---|
| 73 | |
|---|
| 74 | //Compute Denominator |
|---|
| 75 | denominator += (instance.value(j) * instance.value(j) * BayesianLogisticRegression.bigF(R[i], |
|---|
| 76 | Delta * Math.abs(instance.value(j)))); |
|---|
| 77 | } |
|---|
| 78 | } |
|---|
| 79 | |
|---|
| 80 | numerator += ((2.0 * Beta) / Hyperparameter); |
|---|
| 81 | denominator += (2.0 / Hyperparameter); |
|---|
| 82 | value = numerator / denominator; |
|---|
| 83 | |
|---|
| 84 | return (0 - (value)); |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | /** |
|---|
| 88 | * This method calls the log-likelihood implemented in the Prior |
|---|
| 89 | * abstract class. |
|---|
| 90 | * @param betas |
|---|
| 91 | * @param instances |
|---|
| 92 | */ |
|---|
| 93 | public void computeLoglikelihood(double[] betas, Instances instances) { |
|---|
| 94 | super.computelogLikelihood(betas, instances); |
|---|
| 95 | } |
|---|
| 96 | |
|---|
| 97 | /** |
|---|
| 98 | * This function computes the penalty term specific to Gaussian distribution. |
|---|
| 99 | * @param betas |
|---|
| 100 | * @param hyperparameters |
|---|
| 101 | */ |
|---|
| 102 | public void computePenalty(double[] betas, double[] hyperparameters) { |
|---|
| 103 | penalty = 0.0; |
|---|
| 104 | |
|---|
| 105 | for (int j = 0; j < betas.length; j++) { |
|---|
| 106 | penalty += (Math.log(Math.sqrt(hyperparameters[j])) + |
|---|
| 107 | (Math.log(2 * Math.PI) / 2) + |
|---|
| 108 | ((betas[j] * betas[j]) / (2 * hyperparameters[j]))); |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | penalty = 0 - penalty; |
|---|
| 112 | } |
|---|
| 113 | |
|---|
| 114 | /** |
|---|
| 115 | * Returns the revision string. |
|---|
| 116 | * |
|---|
| 117 | * @return the revision |
|---|
| 118 | */ |
|---|
| 119 | public String getRevision() { |
|---|
| 120 | return RevisionUtils.extract("$Revision: 1.2 $"); |
|---|
| 121 | } |
|---|
| 122 | } |
|---|