/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* NaiveBayesUpdateable.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.bayes;
import weka.classifiers.UpdateableClassifier;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
/**
* Class for a Naive Bayes classifier using estimator classes. This is the updateable version of NaiveBayes.
* This classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.
*
* For more information on Naive Bayes classifiers, see
*
* George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995.
*
* @inproceedings{John1995, * address = {San Mateo}, * author = {George H. John and Pat Langley}, * booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence}, * pages = {338-345}, * publisher = {Morgan Kaufmann}, * title = {Estimating Continuous Distributions in Bayesian Classifiers}, * year = {1995} * } ** * * Valid options are: * *
-K * Use kernel density estimator rather than normal * distribution for numeric attributes* *
-D * Use supervised discretization to process numeric attributes ** *
-O * Display model in old format (good when there are many classes) ** * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.11 $ */ public class NaiveBayesUpdateable extends NaiveBayes implements UpdateableClassifier { /** for serialization */ static final long serialVersionUID = -5354015843807192221L; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for a Naive Bayes classifier using estimator classes. This is the " +"updateable version of NaiveBayes.\n" +"This classifier will use a default precision of 0.1 for numeric attributes " +"when buildClassifier is called with zero training instances.\n\n" +"For more information on Naive Bayes classifiers, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { return super.getTechnicalInformation(); } /** * Set whether supervised discretization is to be used. * * @param newblah true if supervised discretization is to be used. */ public void setUseSupervisedDiscretization(boolean newblah) { if (newblah) { throw new IllegalArgumentException("Can't use discretization " + "in NaiveBayesUpdateable!"); } m_UseDiscretization = false; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.11 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new NaiveBayesUpdateable(), argv); } }